#| child: aaa.Rmd #| include: false
r descr_models("naive_Bayes", "h2o")
#| label: h2o-param-info #| echo: false defaults <- tibble::tibble(parsnip = c("Laplace"), default = c("0.0")) param <- naive_Bayes() |> set_engine("h2o") |> make_parameter_list(defaults)
This model has r nrow(param)
tuning parameter:
#| label: h2o-param-list #| echo: false #| results: asis param$item
[h2o::h2o.naiveBayes()] provides several engine arguments to deal with imbalances and rare classes:
balance_classes
A logical value controlling over/under-sampling (for imbalanced data). Defaults to FALSE
.
class_sampling_factors
The over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Require balance_classes
to be TRUE
.
min_sdev
: The minimum standard deviation to use for observations without enough data, must be greater than 1e-10.
min_prob
: The minimum probability to use for observations with not enough data.
r uses_extension("naive_Bayes", "h2o", "classification")
[agua::h2o_train_nb()] is a wrapper around [h2o::h2o.naiveBayes()].
#| label: h2o-cls naive_Bayes(Laplace = numeric(0)) |> set_engine("h2o") |> translate()
#| child: template-h2o-init.Rmd
#| child: template-bundle.Rmd
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.