#| child: aaa.Rmd #| include: false
r descr_models("nearest_neighbor", "kknn")
#| label: kknn-param-info #| echo: false defaults <- tibble::tibble(parsnip = c("neighbors", "weight_func", "dist_power"), default = c("5L", "'optimal'", "2.0")) param <- nearest_neighbor() |> set_engine("kknn") |> make_parameter_list(defaults)
This model has r nrow(param)
tuning parameters:
#| label: kknn-param-list #| echo: false #| results: asis param$item
Parsnip changes the default range for neighbors
to c(1, 15)
and dist_power
to c(1/10, 2)
.
#| label: kknn-reg nearest_neighbor( neighbors = integer(1), weight_func = character(1), dist_power = double(1) ) |> set_engine("kknn") |> set_mode("regression") |> translate()
min_rows()
will adjust the number of neighbors if the chosen value if it is not consistent with the actual data dimensions.
#| label: kknn-cls nearest_neighbor( neighbors = integer(1), weight_func = character(1), dist_power = double(1) ) |> set_engine("kknn") |> set_mode("classification") |> translate()
#| child: template-makes-dummies.Rmd
#| child: template-same-scale.Rmd
The "Fitting and Predicting with parsnip" article contains examples for nearest_neighbor()
with the "kknn"
engine.
#| child: template-no-case-weights.Rmd
#| child: template-butcher.Rmd
Hechenbichler K. and Schliep K.P. (2004) Weighted k-Nearest-Neighbor Techniques and Ordinal Classification, Discussion Paper 399, SFB 386, Ludwig-Maximilians University Munich
Kuhn, M, and K Johnson. 2013. Applied Predictive Modeling. Springer.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.