Nothing
#| child: aaa.Rmd #| include: false
r descr_models("pls", "mixOmics")
#| label: mixOmics-param-info #| echo: false defaults <- tibble::tibble(parsnip = c("num_comp", "predictor_prop"), default = c("2L", "see below")) param <- pls() |> set_engine("mixOmics") |> set_mode("regression") |> make_parameter_list(defaults)
This model has r nrow(param) tuning parameters:
#| label: mixOmics-param-list #| echo: false #| results: asis param$item
r uses_extension("pls", "mixOmics", "regression")
#| label: mixOmics-reg library(plsmod) pls(num_comp = integer(1), predictor_prop = double(1)) |> set_engine("mixOmics") |> set_mode("regression") |> translate()
[plsmod::pls_fit()] is a function that:
num_comp if the value is larger than the number of factors.predictor_prop.keepX argument of mixOmics::spls() for sparse models. r uses_extension("pls", "mixOmics", "classification")
#| label: mixOmics-cls library(plsmod) pls(num_comp = integer(1), predictor_prop = double(1)) |> set_engine("mixOmics") |> set_mode("classification") |> translate()
In this case, [plsmod::pls_fit()] has the same role as above but eventually targets mixOmics::plsda() or mixOmics::splsda().
This package is available via the Bioconductor repository and is not accessible via CRAN. You can install using:
#| eval: false if (!require("remotes", quietly = TRUE)) { install.packages("remotes") } remotes::install_bioc("mixOmics")
#| child: template-makes-dummies.Rmd
#| child: template-zv.Rmd
#| child: template-same-scale.Rmd
#| child: template-no-case-weights.Rmd
#| label: predict-types parsnip:::get_from_env("pls_predict") |> dplyr::select(mode, type)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.