#| child: aaa.Rmd
#| include: false

r descr_models("pls", "mixOmics")

Tuning Parameters

#| label: mixOmics-param-info
#| echo: false
defaults <- 
  tibble::tibble(parsnip = c("num_comp", "predictor_prop"),
                 default = c("2L",           "see below"))

param <-
  pls() |> 
  set_engine("mixOmics") |> 
  set_mode("regression") |> 
  make_parameter_list(defaults)

This model has r nrow(param) tuning parameters:

#| label: mixOmics-param-list
#| echo: false
#| results: asis
param$item

Translation from parsnip to the underlying model call (regression)

r uses_extension("pls", "mixOmics", "regression")

#| label: mixOmics-reg
library(plsmod)

pls(num_comp = integer(1), predictor_prop = double(1)) |>
  set_engine("mixOmics") |>
  set_mode("regression") |>
  translate()

[plsmod::pls_fit()] is a function that:

Translation from parsnip to the underlying model call (classification)

r uses_extension("pls", "mixOmics", "classification")

#| label: mixOmics-cls
library(plsmod)

pls(num_comp = integer(1), predictor_prop = double(1)) |>
  set_engine("mixOmics") |>
  set_mode("classification") |>
  translate()

In this case, [plsmod::pls_fit()] has the same role as above but eventually targets mixOmics::plsda() or mixOmics::splsda().

Installing mixOmics

This package is available via the Bioconductor repository and is not accessible via CRAN. You can install using:

#| eval: false
  if (!require("remotes", quietly = TRUE)) {
    install.packages("remotes")
  }

  remotes::install_bioc("mixOmics")

Preprocessing requirements

#| child: template-makes-dummies.Rmd
#| child: template-zv.Rmd
#| child: template-same-scale.Rmd

Case weights

#| child: template-no-case-weights.Rmd

References



Try the parsnip package in your browser

Any scripts or data that you put into this service are public.

parsnip documentation built on June 8, 2025, 12:10 p.m.