Nothing
#| child: aaa.Rmd #| include: false
r descr_models("pls", "mixOmics")
#| label: mixOmics-param-info #| echo: false defaults <- tibble::tibble(parsnip = c("num_comp", "predictor_prop"), default = c("2L", "see below")) param <- pls() |> set_engine("mixOmics") |> set_mode("regression") |> make_parameter_list(defaults)
This model has r nrow(param)
tuning parameters:
#| label: mixOmics-param-list #| echo: false #| results: asis param$item
r uses_extension("pls", "mixOmics", "regression")
#| label: mixOmics-reg library(plsmod) pls(num_comp = integer(1), predictor_prop = double(1)) |> set_engine("mixOmics") |> set_mode("regression") |> translate()
[plsmod::pls_fit()] is a function that:
num_comp
if the value is larger than the number of factors.predictor_prop
.keepX
argument of mixOmics::spls()
for sparse models. r uses_extension("pls", "mixOmics", "classification")
#| label: mixOmics-cls library(plsmod) pls(num_comp = integer(1), predictor_prop = double(1)) |> set_engine("mixOmics") |> set_mode("classification") |> translate()
In this case, [plsmod::pls_fit()] has the same role as above but eventually targets mixOmics::plsda()
or mixOmics::splsda()
.
This package is available via the Bioconductor repository and is not accessible via CRAN. You can install using:
#| eval: false if (!require("remotes", quietly = TRUE)) { install.packages("remotes") } remotes::install_bioc("mixOmics")
#| child: template-makes-dummies.Rmd
#| child: template-zv.Rmd
#| child: template-same-scale.Rmd
#| child: template-no-case-weights.Rmd
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.