#| child: aaa.Rmd #| include: false
r descr_models("rule_fit", "h2o")
#| label: h2o-param-info #| echo: false defaults <- tibble::tibble(parsnip = c("tree_depth", "trees", "penalty"), default = c("3L", "50L", 0)) param <- rule_fit() |> set_engine("h2o") |> make_parameter_list(defaults)
This model has r nrow(param)
tuning parameters:
#| label: h2o-param-list #| echo: false #| results: asis param$item
Note that penalty
for the h2o engine in `rule_fit()`` corresponds to the L1 penalty (LASSO).
Other engine arguments of interest:
algorithm
: The algorithm to use to generate rules. should be one of "AUTO", "DRF", "GBM", defaults to "AUTO".
min_rule_length
: Minimum length of tree depth, opposite of tree_dpeth
, defaults to 3.
max_num_rules
: The maximum number of rules to return. The default value of -1 means the number of rules is selected by diminishing returns in model deviance.
model_type
: The type of base learners in the ensemble, should be one of: "rules_and_linear", "rules", "linear", defaults to "rules_and_linear".
[agua::h2o_train_rule()] is a wrapper around [h2o::h2o.rulefit()].
r uses_extension("rule_fit", "h2o", "regression")
#| label: h2o-reg library(rules) rule_fit( trees = integer(1), tree_depth = integer(1), penalty = numeric(1) ) |> set_engine("h2o") |> set_mode("regression") |> translate()
[agua::h2o_train_rule()] for rule_fit()
is a wrapper around [h2o::h2o.rulefit()].
r uses_extension("rule_fit", "h2o", "classification")
#| label: h2o-cls rule_fit( trees = integer(1), tree_depth = integer(1), penalty = numeric(1) ) |> set_engine("h2o") |> set_mode("classification") |> translate()
#| child: template-makes-dummies.Rmd
#| child: template-h2o-init.Rmd
#| child: template-bundle.Rmd
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.