Nothing
Code
set_new_model()
Condition
Error in `set_new_model()`:
! `model` must be a single string, not absent.
Code
set_new_model(2)
Condition
Error in `set_new_model()`:
! `model` must be a single string, not the number 2.
Code
set_new_model(letters[1:2])
Condition
Error in `set_new_model()`:
! `model` must be a single string, not a character vector.
Code
get_from_env("modes")
Output
[1] "classification" "regression" "censored regression"
[4] "quantile regression" "unknown"
Code
set_model_mode("sponge")
Condition
Error in `set_model_mode()`:
! `mode` must be a single string, not absent.
Code
set_model_engine("sponge", eng = "gum")
Condition
Error in `set_model_engine()`:
! `mode` must be a single string, not absent.
Code
set_model_engine("sponge", mode = "classification")
Condition
Error in `set_model_engine()`:
! `eng` must be a single string, not absent.
Code
set_model_engine("sponge", mode = "regression", eng = "gum")
Condition
Error in `set_model_engine()`:
! "regression" is not a known mode for model `sponge()`.
Code
set_dependency("sponge", "gum", letters[1:2])
Condition
Error in `set_dependency()`:
! `pkg` must be a single string, not a character vector.
Code
set_dependency("sponge", "gummies", "trident")
Condition
Error in `set_dependency()`:
! The engine "gummies" has not been registered for model "sponge".
Code
set_dependency("sponge", "gum", "trident", mode = "regression")
Condition
Error in `set_dependency()`:
! mode "regression" is not a valid mode for "sponge".
Code
set_model_arg(model = "lunchroom", eng = "gum", parsnip = "modeling", original = "modelling",
func = list(pkg = "foo", fun = "bar"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! Model "lunchroom" has not been registered.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "modeling", func = list(
pkg = "foo", fun = "bar"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `original` must be a single string, not absent.
Code
set_model_arg(model = "sponge", eng = "gum", original = "modelling", func = list(
pkg = "foo", fun = "bar"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `parsnip` must be a single string, not absent.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling",
func = "foo::bar", has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling",
func = list(pkg = "foo", fun = "bar"), has_submodel = 2)
Condition
Error in `set_model_arg()`:
! `has_submodel` must be `TRUE` or `FALSE`, not the number 2.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling",
func = list(pkg = "foo", fun = "bar"))
Condition
Error in `set_model_arg()`:
! `has_submodel` must be `TRUE` or `FALSE`, not absent.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "yodeling", original = "yodelling",
func = c(foo = "a", bar = "b"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "yodeling", original = "yodelling",
func = c(foo = "a"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "yodeling", original = "yodelling",
func = c(fun = 2, pkg = 1), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! The `fun` element of `func` must be a single string, not the number 2.
Code
set_fit(model = "cactus", eng = "gum", mode = "classification", value = fit_vals)
Condition
Error in `set_fit()`:
! Model "cactus" has not been registered.
Code
set_fit(model = "sponge", eng = "nose", mode = "classification", value = fit_vals)
Condition
Error in `set_fit()`:
! The combination of engine `nose` and mode `classification` has not been registered for model `sponge`.
Code
set_fit(model = "sponge", eng = "gum", mode = "frog", value = fit_vals)
Condition
Error in `set_fit()`:
! "frog" is not a known mode for model `sponge()`.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals[
-i])
Condition
Error in `set_fit()`:
! The `value` argument should have elements: defaults, func, interface, and protect.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals[
-i])
Condition
Error in `set_fit()`:
! The `value` argument should have elements: defaults, func, interface, and protect.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals[
-i])
Condition
Error in `set_fit()`:
! The `value` argument should have elements: defaults, func, interface, and protect.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals[
-i])
Condition
Error in `set_fit()`:
! The `value` argument should have elements: defaults, func, interface, and protect.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals_0)
Condition
Error in `check_interface_val()`:
! The interface element should have a single of: data.frame, formula, and matrix.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals_1)
Condition
Error in `set_fit()`:
! The defaults element should be a list.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals_2)
Condition
Error in `check_fit_info()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals_3)
Condition
Error in `check_interface_val()`:
! The interface element should have a single of: data.frame, formula, and matrix.
Code
set_pred(model = "cactus", eng = "gum", mode = "classification", type = "class",
value = class_vals)
Condition
Error in `set_pred()`:
! Model "cactus" has not been registered.
Code
set_pred(model = "sponge", eng = "nose", mode = "classification", type = "class",
value = class_vals)
Condition
Error in `set_pred()`:
! The combination of engine `nose` and mode `classification` has not been registered for model `sponge`.
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "eggs",
value = class_vals)
Condition
Error in `set_pred()`:
! The prediction type should be one of: "raw", "numeric", "class", "prob", "conf_int", "pred_int", "quantile", "time", "survival", "linear_pred", and "hazard".
Code
set_pred(model = "sponge", eng = "gum", mode = "frog", type = "class", value = class_vals)
Condition
Error in `set_pred()`:
! "frog" is not a known mode for model `sponge()`.
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals[-i])
Condition
Error in `set_pred()`:
! The predict module should have elements: "args", "func", "post", and "pre".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals[-i])
Condition
Error in `set_pred()`:
! The predict module should have elements: "args", "func", "post", and "pre".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals[-i])
Condition
Error in `set_pred()`:
! The predict module should have elements: "args", "func", "post", and "pre".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals[-i])
Condition
Error in `set_pred()`:
! The predict module should have elements: "args", "func", "post", and "pre".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals_0)
Condition
Error in `set_pred()`:
! The `pre` element of `pred_obj` must be a function or `NULL`, not the string "I".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals_1)
Condition
Error in `set_pred()`:
! The `post` element of `pred_obj` must be a function or `NULL`, not the string "I".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals_2)
Condition
Error in `check_pred_info()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
show_model_info("rand_forest")
Output
Information for `rand_forest`
modes: unknown, classification, regression, censored regression
engines:
classification: randomForest, ranger1, spark
regression: randomForest, ranger1, spark
1The model can use case weights.
arguments:
ranger:
mtry --> mtry
trees --> num.trees
min_n --> min.node.size
randomForest:
mtry --> mtry
trees --> ntree
min_n --> nodesize
spark:
mtry --> feature_subset_strategy
trees --> num_trees
min_n --> min_instances_per_node
fit modules:
engine mode
ranger classification
ranger regression
randomForest classification
randomForest regression
spark classification
spark regression
prediction modules:
mode engine methods
classification randomForest class, prob, raw
classification ranger class, conf_int, prob, raw
classification spark class, prob
regression randomForest numeric, raw
regression ranger conf_int, numeric, raw
regression spark numeric
Code
show_model_info("mlp")
Output
Information for `mlp`
modes: unknown, classification, regression
engines:
classification: brulee, brulee_two_layer, keras, nnet
regression: brulee, brulee_two_layer, keras, nnet
arguments:
keras:
hidden_units --> hidden_units
penalty --> penalty
dropout --> dropout
epochs --> epochs
activation --> activation
nnet:
hidden_units --> size
penalty --> decay
epochs --> maxit
brulee:
hidden_units --> hidden_units
penalty --> penalty
epochs --> epochs
dropout --> dropout
learn_rate --> learn_rate
activation --> activation
brulee_two_layer:
hidden_units --> hidden_units
penalty --> penalty
epochs --> epochs
dropout --> dropout
learn_rate --> learn_rate
activation --> activation
fit modules:
engine mode
keras regression
keras classification
nnet regression
nnet classification
brulee regression
brulee classification
brulee_two_layer regression
brulee_two_layer classification
prediction modules:
mode engine methods
classification brulee class, prob
classification brulee_two_layer class, prob
classification keras class, prob, raw
classification nnet class, prob, raw
regression brulee numeric
regression brulee_two_layer numeric
regression keras numeric, raw
regression nnet numeric, raw
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.