mars: Multivariate adaptive regression splines (MARS)

View source: R/mars.R

marsR Documentation

Multivariate adaptive regression splines (MARS)

Description

mars() defines a generalized linear model that uses artificial features for some predictors. These features resemble hinge functions and the result is a model that is a segmented regression in small dimensions. This function can fit classification and regression models.

\Sexpr[stage=render,results=rd]{parsnip:::make_engine_list("mars")}

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

mars(
  mode = "unknown",
  engine = "earth",
  num_terms = NULL,
  prod_degree = NULL,
  prune_method = NULL
)

Arguments

mode

A single character string for the prediction outcome mode. Possible values for this model are "unknown", "regression", or "classification".

engine

A single character string specifying what computational engine to use for fitting.

num_terms

The number of features that will be retained in the final model, including the intercept.

prod_degree

The highest possible interaction degree.

prune_method

The pruning method.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method to fit the model is also defined. See set_engine() for more on setting the engine, including how to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To pass values programmatically, use the injection operator like so:

value <- 1
mars(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

\Sexpr[stage=render,results=rd]{parsnip:::make_seealso_list("mars")}

Examples


show_engines("mars")

mars(mode = "regression", num_terms = 5)


parsnip documentation built on June 24, 2024, 5:14 p.m.