| null_model | R Documentation |
Fit a single mean or largest class model. null_model() is the user-facing
function that relies on the underlying computational function, nullmodel().
null_model(mode = "classification", engine = "parsnip")
mode |
A single character string for the type of model. The only
possible values for this model are |
engine |
A single character string specifying what computational engine
to use for fitting. Possible engines are listed below. The default for this
model is |
null_model() defines a simple, non-informative model. It doesn't have any
main arguments. This function can fit classification and regression models.
null_model() emulates other model building functions, but returns the
simplest model possible given a training set: a single mean for numeric
outcomes and the most prevalent class for factor outcomes. When class
probabilities are requested, the percentage of the training set samples with
the most prevalent class is returned.
Engines may have pre-set default arguments when executing the model fit call. For this type of model, the template of the fit calls are below:
null_model() |>
set_engine("parsnip") |>
set_mode("regression") |>
translate()
## Null Model Specification (regression) ## ## Computational engine: parsnip ## ## Model fit template: ## parsnip::nullmodel(x = missing_arg(), y = missing_arg())
null_model() |>
set_engine("parsnip") |>
set_mode("classification") |>
translate()
## Null Model Specification (classification) ## ## Computational engine: parsnip ## ## Model fit template: ## parsnip::nullmodel(x = missing_arg(), y = missing_arg())
parsnip:::get_from_env("null_model_predict") |>
dplyr::select(mode, type)
## # A tibble: 5 x 2 ## mode type ## <chr> <chr> ## 1 regression numeric ## 2 regression raw ## 3 classification class ## 4 classification prob ## 5 classification raw
fit.model_spec()
null_model(mode = "regression")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.