Nothing
skip_on_os("mac")
skip_on_cran()
test_that("icc", {
m0 <- lm(Sepal.Length ~ Petal.Length, data = iris)
expect_warning(expect_null(icc(m0)))
})
test_that("icc", {
skip_if_not_installed("lme4")
m1 <- lme4::lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
expect_equal(
icc(m1),
data.frame(
ICC_adjusted = 0.910433109183341, ICC_conditional = 0.310947768161385,
ICC_unadjusted = 0.310947768161385
),
tolerance = 1e-3,
ignore_attr = TRUE
)
})
# bootstrapped CIs ------------
test_that("icc, CI", {
skip_if_not_installed("lme4")
data(sleepstudy, package = "lme4")
m <- lme4::lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
set.seed(123)
out <- icc(m, ci = 0.95)
expect_equal(out$ICC_adjusted, c(0.72166, 0.52239, 0.84024), tolerance = 1e-1)
expect_equal(out$ICC_unadjusted, c(0.52057, 0.32429, 0.67123), tolerance = 1e-1)
})
test_that("icc", {
skip_if_not_installed("curl")
skip_if_offline()
skip_if_not_installed("httr2")
m2 <- insight::download_model("stanreg_lmerMod_1")
expect_equal(
icc(m2),
data.frame(
ICC_adjusted = 0.40579, ICC_conditional = 0.21881,
ICC_unadjusted = 0.21881
),
tolerance = 1e-2,
ignore_attr = TRUE
)
})
test_that("icc", {
skip_if_not_installed("curl")
skip_if_offline()
skip_if_not_installed("httr2")
m3 <- insight::download_model("brms_mixed_1")
set.seed(123)
expect_equal(
variance_decomposition(m3)$ICC_decomposed,
0.3262006,
tolerance = 0.05
)
})
test_that("icc", {
skip_if_not_installed("curl")
skip_if_offline()
skip_if_not_installed("httr2")
m3 <- insight::download_model("brms_mixed_1")
set.seed(123)
expect_equal(
icc(m3),
data.frame(
ICC_adjusted = 0.930217931275196, ICC_conditional = 0.771475122370036,
ICC_unadjusted = 0.771475122370036
),
tolerance = 0.05,
ignore_attr = TRUE
)
})
test_that("icc", {
skip_if_not_installed("lme4")
data(sleepstudy, package = "lme4")
set.seed(12345)
sleepstudy$grp <- sample.int(5, size = 180, replace = TRUE)
sleepstudy$subgrp <- NA
for (i in 1:5) {
filter_group <- sleepstudy$grp == i
sleepstudy$subgrp[filter_group] <-
sample.int(30, size = sum(filter_group), replace = TRUE)
}
model <- lme4::lmer(
Reaction ~ Days + (1 | grp) + (1 | Subject),
data = sleepstudy
)
expect_equal(
icc(model, by_group = TRUE),
structure(
list(
Group = c("Subject", "grp"),
ICC = c(0.5896587, 0.0016551)
),
class = c("icc_by_group", "data.frame"),
row.names = c(NA, -2L)
),
tolerance = 0.05
)
})
test_that("icc", {
skip_if_not_installed("nlme")
skip_if_not_installed("lme4")
m <- nlme::lme(Sepal.Length ~ Petal.Length, random = ~ 1 | Species, data = iris)
out <- icc(m)
expect_equal(out$ICC_adjusted, 0.9104331, tolerance = 0.01)
expect_equal(out$ICC_unadjusted, 0.3109478, tolerance = 0.01)
})
test_that("icc, glmmTMB 1.1.9+", {
skip_if_not_installed("glmmTMB")
set.seed(101)
dd <- data.frame(
z = rnorm(1000),
x1 = 1:1000,
x2 = runif(1000, 0, 10),
re = rep(1:20, each = 50)
)
dd <- transform(dd, x3 = as.factor(ifelse(
x1 <= 500, "Low", sample(c("Middle", "High"), 1000, replace = TRUE)
)))
dd <- transform(dd, x4 = as.factor(ifelse(
x1 > 500, "High", sample(c("Absent", "Low"), 1000, replace = TRUE)
)))
dd <- transform(dd, z = z + re * 5)
expect_message({
mod_TMB <- glmmTMB::glmmTMB(
z ~ x1 + x2 + x3 + x4 + (1 | re),
data = dd,
start = list(theta = 3),
control = glmmTMB::glmmTMBControl(rank_check = "adjust")
)
})
expect_equal(
icc(mod_TMB),
data.frame(
ICC_adjusted = 0.995480998331767,
ICC_conditional = 0.244468078371849,
ICC_unadjusted = 0.244468078371849
),
ignore_attr = TRUE,
tolerance = 1e-4
)
expect_equal(
r2(mod_TMB),
list(
R2_conditional = c(`Conditional R2` = 0.998890233308478),
R2_marginal = c(`Marginal R2` = 0.754422154936629)
),
ignore_attr = TRUE,
tolerance = 1e-4
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.