Nothing
## pdata.frame and pseries are adaptations of respectively data.frame
## and vector for panel data. An index attribute is added to both,
## which is a data.frame containing the indexes. There is no pseries
## function, it is the class of series extracted from a
## pdata.frame. index and pdim functions are used to extract
## respectively the data.frame containing the index and the dimensions
## of the panel
## pdata.frame:
## - $<-
## - [
## - $
## - [[
## - print
## - as.list
## - as.data.frame
## - pseriesfy
## - arrange for dplyr compatibility
## pseries:
## - [
## - print
## - as.matrix
## - plot
## - summary
## - plot.summary
## - print.summary
## - is.pseries
## - pseries2pdataframe (non-exported)
## - pmerge (non-exported)
## pdim:
## - pdim.default
## - pdim.data.frame
## - pdim.pdata.frame
## - pdim.pseries
## - pdim.panelmodel
## - pdim.pgmm
## - print.pdim
## index:
## - index.pindex
## - index.pdata.frame
## - index.pseries
## - index.panelmodel
## - is.index (non-exported)
## - has.index (non-exported)
## - checkNA.index (non-exported)
## - pos.index (non-exported)
fancy.row.names <- function(index, sep = "-") {
## non-exported
# assumes index is a list of 2 or 3 factors [not class pindex]
if (length(index) == 2L) {result <- paste(index[[1L]], index[[2L]], sep = sep)}
# this in the order also used for sorting (group, id, time):
if (length(index) == 3L) {result <- paste(index[[3L]], index[[1L]], index[[2L]], sep = sep)}
return(result)
}
#' pdata.frame: a data.frame for panel data
#'
#' An object of class 'pdata.frame' is a data.frame with an index
#' attribute that describes its individual and time dimensions.
#'
#' The `index` argument indicates the dimensions of the panel. It can
#' be: \itemize{
#' \item a vector of two character strings which
#' contains the names of the individual and of the time indexes,
#' \item
#' a character string which is the name of the individual index
#' variable. In this case, the time index is created automatically and
#' a new variable called "time" is added, assuming consecutive and
#' ascending time periods in the order of the original data,
#' \item an integer, the number of individuals. In this case, the data
#' need to be a balanced panel and be organized as a stacked time series
#' (successive blocks of individuals, each block being a time series
#' for the respective individual) assuming consecutive and ascending
#' time periods in the order of the original data. Two new variables
#' are added: "id" and "time" which contain the individual and the
#' time indexes.
#' }
#'
#' The `"[["` and `"$"` extract a series from the `pdata.frame`. The
#' `"index"` attribute is then added to the series and a class
#' attribute `"pseries"` is added. The `"["` method behaves as for
#' `data.frame`, except that the extraction is also applied to the
#' `index` attribute. A safe way to extract the index attribute is to
#' use the function [index()] for 'pdata.frames' (and other objects).
#'
#' `as.data.frame` removes the index attribute from the `pdata.frame`
#' and adds it to each column. For its argument `row.names` set to
#' `FALSE` row names are an integer series, `TRUE` gives "fancy" row
#' names; if a character (with length of the resulting data frame),
#' the row names will be the character's elements.
#'
#' `as.list` behaves by default identical to
#' [base::as.list.data.frame()] which means it drops the
#' attributes specific to a pdata.frame; if a list of pseries is
#' wanted, the attribute `keep.attributes` can to be set to
#' `TRUE`. This also makes `lapply` work as expected on a pdata.frame
#' (see also **Examples**).
#'
#' @param x a `data.frame` for the `pdata.frame` function and a
#' `pdata.frame` for the methods,
#' @param i see [Extract()],
#' @param j see [Extract()],
#' @param y one of the columns of the `data.frame`,
#' @param index this argument indicates the individual and time
#' indexes. See **Details**,
#' @param drop see [Extract()],
#' @param drop.index logical, indicates whether the indexes are to be
#' excluded from the resulting pdata.frame,
#' @param optional see [as.data.frame()],
#' @param row.names `NULL` or logical, indicates whether "fancy" row
#' names (combination of individual index and time index) are to
#' be added to the returned (p)data.frame (`NULL` and `FALSE` have
#' the same meaning for `pdata.frame`; for
#' `as.data.frame.pdata.frame` see Details),
#' @param stringsAsFactors logical, indicating whether character
#' vectors are to be converted to factors,
#' @param replace.non.finite logical, indicating whether values for
#' which `is.finite()` yields `TRUE` are to be replaced by `NA`
#' values, except for character variables (defaults to `FALSE`),
#' @param drop.NA.series logical, indicating whether all-`NA` columns
#' are to be removed from the pdata.frame (defaults to `FALSE`),
#' @param drop.const.series logical, indicating whether constant
#' columns are to be removed from the pdata.frame (defaults to
#' `FALSE`),
#' @param drop.unused.levels logical, indicating whether unused levels
#' of factors are to be dropped (defaults to `FALSE`) (unused
#' levels are always dropped from variables serving to construct
#' the index variables),
#' @param keep.attributes logical, only for as.list and as.data.frame
#' methods, indicating whether the elements of the returned
#' list/columns of the data.frame should have the pdata.frame's
#' attributes added (default: FALSE for as.list, TRUE for
#' as.data.frame),
#' @param name the name of the `data.frame`,
#' @param value the name of the variable to include,
#' @param \dots further arguments passed on to internal usage of `data.frame`.
#' @return a `pdata.frame` object: this is a `data.frame` with an
#' `index` attribute which is a `data.frame` with two variables,
#' the individual and the time indexes, both being factors. The
#' resulting pdata.frame is sorted by the individual index, then
#' by the time index.
#' @export
#' @author Yves Croissant
#' @seealso [index()] to extract the index variables from a
#' 'pdata.frame' (and other objects), [pdim()] to check the
#' dimensions of a 'pdata.frame' (and other objects), [pvar()] to
#' check for each variable if it varies cross-sectionally and over
#' time. To check if the time periods are consecutive per
#' individual, see [is.pconsecutive()].
#' @keywords classes
#' @examples
#'
#' # Gasoline contains two variables which are individual and time
#' # indexes
#' data("Gasoline", package = "plm")
#' Gas <- pdata.frame(Gasoline, index = c("country", "year"), drop.index = TRUE)
#'
#' # Hedonic is an unbalanced panel, townid is the individual index
#' data("Hedonic", package = "plm")
#' Hed <- pdata.frame(Hedonic, index = "townid", row.names = FALSE)
#'
#' # In case of balanced panel, it is sufficient to give number of
#' # individuals data set 'Wages' is organized as a stacked time
#' # series
#' data("Wages", package = "plm")
#' Wag <- pdata.frame(Wages, 595)
#'
#' # lapply on a pdata.frame by making it a list of pseries first
#' lapply(as.list(Wag[ , c("ed", "lwage")], keep.attributes = TRUE), lag)
#'
#'
pdata.frame <- function(x, index = NULL, drop.index = FALSE, row.names = TRUE,
stringsAsFactors = FALSE,
replace.non.finite = FALSE,
drop.NA.series = FALSE, drop.const.series = FALSE,
drop.unused.levels = FALSE, ...) {
if(inherits(x, "pdata.frame")) {
if(!is.pdata.frame(x)) {
# check properties beyond class and if non-compliant, create proper
# pdata.frame by continuing with pdata.frame function
wrn.txt <- paste0("input 'x' claims to be a pdata.frame but does not have ",
"compliant properties, so tried to re-create a compliant ",
"pdata.frame from 'x'")
warning(wrn.txt)
}
}
if(length(index) > 3L){
stop("'index' can be of length 3 at the most (one index variable for individual, time, group)")
}
# prune input: x is supposed to be a plain data.frame. Other classes building
# on top of R's data frame can inject attributes etc. that confuse functions
# in pkg plm.
x <- data.frame(x, ...)
# if requested: coerce character vectors to factors
if (stringsAsFactors) {
x.char <- names(x)[vapply(x, is.character, FUN.VALUE = TRUE, USE.NAMES = FALSE)]
for (i in x.char){
x[[i]] <- factor(x[[i]])
}
}
# if requested: replace Inf, -Inf, NaN (everything for which is.finite is FALSE) by NA
# (for all but any character columns [relevant if stringAsFactors == FALSE])
if (replace.non.finite) {
for (i in names(x)) {
if (!inherits(x[[i]], "character")) {
x[[i]][!is.finite(x[[i]])] <- NA
}
}
}
# if requested: check and remove complete NA series
if (drop.NA.series) {
na.check <- vapply(x, function(x) sum(!is.na(x)) == 0L, FUN.VALUE = TRUE, USE.NAMES = FALSE)
na.serie <- names(x)[na.check]
if (length(na.serie) > 0L){
if (length(na.serie) == 1L)
cat(paste0("This series is NA and has been removed: ", na.serie, "\n"))
else
cat(paste0("These series are NA and have been removed: ", paste(na.serie, collapse = ", "), "\n"))
}
x <- x[ , !na.check]
}
# if requested: check for constant series and remove
if (drop.const.series) {
# -> var() and sd() on factors is deprecated as of R 3.2.3 -> use duplicated()
cst.check <- vapply(x, function(x) {
if (is.factor(x) || is.character(x)) {
all(duplicated(x[!is.na(x)])[-1L])
} else {
x[! is.finite(x)] <- NA # infinite elements set to NA only for this check
var(as.numeric(x), na.rm = TRUE) == 0
}
}, FUN.VALUE = TRUE, USE.NAMES = FALSE)
# following line: bug fixed thanks to Marciej Szelfer
cst.check <- cst.check | is.na(cst.check)
cst.serie <- names(x)[cst.check]
if (length(cst.serie) > 0L){
if (length(cst.serie) == 1L){
cat(paste0("This series is constant and has been removed: ", cst.serie, "\n"))
}
else{
cat(paste0("These series are constants and have been removed: ",
paste(cst.serie, collapse = ", "), "\n"))
}
}
x <- x[ , !cst.check]
}
# sanity check for 'index' argument. First, check the presence of a
# grouping variable, this should be the third element of the index
# vector or any "group" named element of this vector
group.name <- NULL
if (! is.null(names(index)) || length(index) == 3L){
if (! is.null(names(index))){
grouppos <- match("group", names(index))
if (! is.na(grouppos)){
group.name <- index[grouppos]
index <- index[- grouppos]
}
}
if (length(index) == 3L){
group.name <- index[3L]
index <- index[-3L]
}
}
if (length(index) == 0L) index <- NULL
# if index is NULL, both id and time are NULL
if (is.null(index)){
id <- NULL
time <- NULL
}
# if the length of index is 1, id = index and time is NULL
if (length(index) == 1L){
id <- index
time <- NULL
}
# if the length of index is 2, the first element is id, the second
# is time
if (length(index) == 2L){
id <- index[1L]
time <- index[2L]
}
# if both id and time are NULL, the names of the index are the first
# two names of x
if (is.null(id) && is.null(time)){
id.name <- names(x)[1L]
time.name <- names(x)[2L]
}
else{
id.name <- id
time.name <- time
}
# if index is numeric, this indicates a balanced panel with no. of
# individuals equal to id.name
if(is.numeric(id.name)){
if(!is.null(time.name))
warning("The time index (second element of 'index' argument) will be ignored\n")
N <- nrow(x)
if( (N %% id.name) != 0){
stop(paste0("unbalanced panel, in this case the individual index may not be indicated by an integer\n",
"but by specifying a column of the data.frame in the first element of the 'index' argument\n"))
}
else{
T <- N %/% id.name
n <- N %/% T
time <- rep((1:T), n)
id <- rep((1:n), rep(T, n))
id.name <- "id"
time.name <- "time"
if (id.name %in% names(x)) warning(paste0("column '", id.name, "' overwritten by id index"))
if (time.name %in% names(x)) warning(paste0("column '", time.name, "' overwritten by time index"))
x[[id.name]] <- id <- as.factor(id)
x[[time.name]] <- time <- as.factor(time)
}
}
else{
# id.name is not numeric, i.e., individual index is supplied
if (!id.name %in% names(x)) stop(paste("variable '", id.name, "' does not exist (individual index)", sep=""))
if (is.factor(x[[id.name]])){
id <- x[[id.name]] <- x[[id.name]][drop = TRUE] # drops unused levels of factor
}
else{
id <- x[[id.name]] <- as.factor(x[[id.name]])
}
if (is.null(time.name)){
# if no time index is supplied, add time variable
# automatically order data by individual index, necessary
# for the automatic addition of time index to be
# successful if no time index was supplied
x <- x[order(x[[id.name]]), ]
Ti <- collapse::qtable(x[[id.name]])
n <- length(Ti)
time <- c()
for (i in seq_len(n)){
time <- c(time, 1:Ti[i])
}
time.name <- "time"
if (time.name %in% names(x))
warning(paste0("column '", time.name, "' overwritten by time index"))
time <- x[[time.name]] <- as.factor(time)
}
else{
# use supplied time index
if (!time.name %in% names(x))
stop(paste0("variable '", time.name, "' does not exist (time index)"))
if (is.factor(x[[time.name]])){
time <- x[[time.name]] <- x[[time.name]][drop = TRUE]
}
else{
time <- x[[time.name]] <- as.factor(x[[time.name]])
}
}
}
# if present, make group variable a factor (just like for id and
# time variables)
if (!is.null(group.name)) {
if (is.factor(x[[group.name]])){
group <- x[[group.name]] <- x[[group.name]][drop = TRUE]
}
else{
group <- x[[group.name]] <- as.factor(x[[group.name]])
}
}
# sort by group (if given), then by id, then by time
if (! is.null(group.name)) x <- x[order(x[[group.name]], x[[id.name]], x[[time.name]]), ]
else x <- x[order(x[[id.name]], x[[time.name]]), ]
# if requested: drop unused levels from factor variables (spare
# those serving for the index as their unused levels are dropped
# already (at least in the attribute "index" they need to be
# dropped b/c much code relies on it))
if (drop.unused.levels) {
var.names <- setdiff(names(x), c(id.name, time.name, group.name))
for (i in var.names){
if (is.factor(x[[i]])){
x[[i]] <- droplevels(x[[i]])
}
}
}
posindex <- match(c(id.name, time.name, group.name), names(x))
index <- unclass(x[ , posindex]) # unclass to list for speed in subsetting, make it data.frame again later
if (drop.index) {
x <- x[ , -posindex, drop = FALSE]
if (ncol(x) == 0L) warning("after dropping of index variables, the pdata.frame contains 0 columns")
}
### warn if duplicate couples
test_doub <- collapse::qtable(index[[1L]], index[[2L]], na.exclude = FALSE) # == base R's table(x, y) # == table(index[[1L]], index[[2L]], useNA = "ifany")
if (any(as.vector(test_doub[!is.na(rownames(test_doub)), !is.na(colnames(test_doub))]) > 1L))
warning(paste("duplicate couples (id-time) in resulting pdata.frame\n to find out which,",
"use, e.g., table(index(your_pdataframe), useNA = \"ifany\")"))
### warn if NAs in index as likely not sane [not using check.NA because that outputs a line for each dimension -> not needed here]
if (anyNA(index[[1L]]) || anyNA(index[[2L]]) || (if(length(index) == 3L) anyNA(index[[3L]]) else FALSE))
warning(paste0("at least one NA in at least one index dimension ",
"in resulting pdata.frame\n to find out which, use, e.g., ",
"table(index(your_pdataframe), useNA = \"ifany\")\n"))
### Could also remove rows with NA in any index' dimension
# drop.rows <- is.na(index[[1L]]) | is.na(index[[2L]])
# if(ncol(index) == 3L) drop.rows <- drop.rows | is.na(index[[3L]])
# if((no.drop.rows <- sum(drop.rows)) > 0L) {
# x <- x[!drop.rows, ]
# index <- index[!drop.rows, ]
# txt.drop.rows <- paste0(no.drop.rows, " row(s) dropped in resulting pdata.frame due to NA(s) in at least one index dimension")
# warning(txt.drop.rows)
# }
if (row.names) {
attr(x, "row.names") <- fancy.row.names(index)
# NB: attr(x, "row.names") allows for duplicate rownames (as
# opposed to row.names(x) <- something)
# NB: no fancy row.names for index attribute (!?):
# maybe because so it is possible to restore original row.names?
}
class(index) <- c("pindex", "data.frame")
attr(x, "index") <- index
class(x) <- c("pdata.frame", "data.frame")
return(x)
}
#' @rdname pdata.frame
#' @export
"$<-.pdata.frame" <- function(x, name, value) {
if (inherits(value, "pseries")){
# remove pseries features before adding value as a column to pdata.frame
if (length(class(value)) == 1L) value <- unclass(value)
else attr(value, "class") <- setdiff(class(value), "pseries")
attr(value, "index") <- NULL
}
"$<-.data.frame"(x, name, value)
}
# NB: We don't have methods for [<-.pdata.frame and [[<-.pdata.frame, so these functions
# dispatch to the respective data.frame methods which assign whatever is
# handed over to the methods. Especially, if a pseries is handed over, this
# results in really assigning a pseries to the pdata.frame in case of usage of
# [<- and [[<-. This is inconsistent because the columns of a pdata.frame do not
# have the 'pseries' features.
# This can be seen by lapply(some_pdata.frame, class) after
# assigning with the respective .data.frame methods
# Extracting/subsetting method for class pseries, [.pseries, retaining the
# pseries features. est cases are in tests/test_pdata.frame_subsetting.R.
#
# We do not provide a [[.pseries method in addition (note the double "["). Thus,
# the base R method is used and behaviour for pseries is what one would expect
# and is in line with base R, see ?Extract for [[ with atomic vectors:
# "The usual form of indexing is [. [[ can be used to select a single element
# dropping names, whereas [ keeps them, e.g., in c(abc = 123)[1]."
# In addition, it also drops other attributes in base R, so applying [[ from
# base R results in dropping names and index which is in line with what one
# would expect for pseries. Example for base R behaviour:
# a <- 1:10
# names(a) <- letters[1:10]
# attr(a, "index") <- "some_index_attribute"
# a[[3]] # drops names and attribute (a[3] keeps names and drops other attributes)
##### [.pseries is commented because it leads to headache when dplyr is loaded
### boiled down to pkg vctrs https://github.com/r-lib/vctrs/issues/1446
### R.utils::detachPackage("dplyr")
### test_pure <- pcdtest(diff(log(price)) ~ diff(lag(log(price))) + diff(lag(log(price), 2)), data = php)
###
### library(dplyr) # first one will error with [.pseries, for plm 2.4-1 it gives a wrong result (lag is hijacked -> known case)
### test_dplyr <- pcdtest(diff(price) ~ diff(lag(price)), data = php)
### test_dplyr_plmlag <- pcdtest(diff(log(price)) ~ diff(plm::lag(log(price))) + diff(plm::lag(log(price), 2)), data = php) # save way
##
##
## @rdname pdata.frame
## @export
# "[.pseries" <- function(x, ...) {
#
# ## use '...' instead of only one specific argument, because subsetting for
# ## factors can have argument 'drop', e.g., x[i, drop=TRUE] see ?Extract.factor
# index <- attr(x, "index")
#
# ## two sanity checks as [.pseries-subsetting was introduced in Q3/2021 and some packages
# ## produced illegal pseries (these pkg errors were fixed by new CRAN releases but maybe
# ## other code out there produces illegal pseries, so leave these sanity checks in here for
# ## a while, then remove (for speed)
# if(is.null(index)) warning("pseries object with is.null(index(pseries)) == TRUE encountered")
# if(!is.null(index) && !is.index(index)) warning(paste0("pseries object has illegal index with class(index) == ", paste0(class(index), collapse = ", ")))
#
# names_orig <- names(x)
# keep_rownr <- seq_along(x) # full length row numbers original pseries
# names(keep_rownr) <- names_orig
#
# if(is.null(names_orig)) {
# names(x) <- keep_rownr # if no names are present, set names as integer sequence to identify rows to keep later
# names(keep_rownr) <- keep_rownr
# }
# x <- remove_pseries_features(x)
# result <- x[...] # actual subsetting
#
# # identify rows to keep in the index:
# keep_rownr <- keep_rownr[names(result)] # row numbers to keep after subsetting
# names(result) <- if(!is.null(names_orig)) names_orig[keep_rownr] else NULL # restore and subset original names if any
#
# # Subset index accordingly:
# # Check if index is null is a workaround for R's data frame subsetting not
# # stripping class pseries but its attributes for factor (for other data types, pseries class is dropped)
# # see https://bugs.r-project.org/bugzilla/show_bug.cgi?id=18140
# if (!is.null(index)) {
# index <- index[keep_rownr, ]
# index <- droplevels(index) # drop unused levels (like in subsetting of pdata.frames)
# }
#
# result <- add_pseries_features(result, index)
# return(result)
# }
## Non-exported internal function for subsetting of pseries. Can be used
## internally.
## While there is now a "proper" subsetting function for pseries, leave this
## subset_pseries for a while just to be safe (currently used in pcdtest())
subset_pseries <- function(x, ...) {
## use '...' instead of only one specific argument, because subsetting for
## factors can have argument 'drop', e.g., x[i, drop=TRUE] see ?Extract.factor
index <- attr(x, "index")
if(is.null(index)) warning("pseries object with is.null(index(pseries)) == TRUE encountered")
if(!is.null(index) && !is.index(index)) warning(paste0("pseries object has illegal index with class(index) == ", paste0(class(index), collapse = ", ")))
names_orig <- names(x)
keep_rownr <- seq_along(x) # full length row numbers original pseries
names(keep_rownr) <- names_orig
if(is.null(names_orig)) {
names(x) <- keep_rownr # if no names are present, set names as integer sequence to identify rows to keep later
names(keep_rownr) <- keep_rownr
}
x <- remove_pseries_features(x)
result <- x[...] # actual subsetting
# identify rows to keep in the index:
keep_rownr <- keep_rownr[names(result)] # row numbers to keep after subsetting
names(result) <- if(!is.null(names_orig)) names_orig[keep_rownr] else NULL # restore and subset original names if any
# Subset index accordingly:
# Check if index is null is a workaround for R's data frame subsetting not
# stripping class pseries but its attributes for factor (for other data types, pseries class is dropped)
# see https://bugs.r-project.org/bugzilla/show_bug.cgi?id=18140
if(!is.null(index)) {
index <- index[keep_rownr, ]
index <- droplevels(index) # drop unused levels (like in subsetting of pdata.frames)
}
result <- add_pseries_features(result, index)
return(result)
}
#' @rdname pdata.frame
#' @export
"[.pdata.frame" <- function(x, i, j, drop) {
# signature of [.data.frame here
missing.i <- missing(i) # missing is only guaranteed to yield correct results,
missing.j <- missing(j) # if its argument was not modified before accessing it
missing.drop <- missing(drop) # -> save information about missingness
sc <- sys.call()
# Nargs_mod to distinguish if called by [] (Nargs_mod == 2L); [,] (Nargs_mod == 3L); [,,] (Nargs_mod == 4L)
Nargs_mod <- nargs() - (!missing.drop)
### subset index (and row names) appropriately:
# subsetting data.frame by only j (x[ , j]) or missing j (x[i]) yields full-row
# column(s) of data.frame, thus do not subset the index because it needs full rows (original index)
#
# subset index if:
# * [i,j] (supplied i AND supplied j) (in this case: Nargs_mod == 3L (or 4L depending on present/missing drop))
# * [i, ] (supplied i AND missing j) (in this case: Nargs_mod == 3L (or 4L depending on present/missing drop))
#
# do not subset index in all other cases (here are the values of Nargs_mod)
# * [ ,j] (missing i AND j supplied) (Nargs_mod == 3L (or 4L depending on present/missing drop))
# * [i] (supplied i AND missing j) (Nargs_mod == 2L) [Nargs_mod distinguishes this case from the one where subsetting is needed!]
# * [i, drop = TRUE/FALSE] (supplied i AND missing j) (Nargs_mod == 2L)
#
# => subset index (and row names) if: supplied i && Nargs_mod >= 3L
index <- attr(x, "index")
x.rownames <- row.names(x)
if (!missing.i && Nargs_mod >= 3L) {
iindex <- i
if (is.character(iindex)) {
# Kevin Tappe 2016-01-04 : in case of indexing (subsetting) a
# pdata.frame by a character, the subsetting vector should be
# converted to numeric by matching to the row names so that the
# index can be correctly subset (by this numeric value).
# Motivation:
# Row names of the pdata.frame and row names of the pdata.frame's
# index are not guaranteed to be the same!
iindex <- match(iindex, rownames(x))
}
# subset index and row names
index <- "[.data.frame"(index, iindex, )
x.rownames <- x.rownames[iindex]
# remove empty levels in index (if any)
# NB: really do dropping of unused levels? Standard R behaviour is to leave the levels and not drop unused levels
# Maybe the dropping is needed for functions like lag.pseries/lagt.pseries to work correctly?
index <- droplevels(index)
# NB: use droplevels() rather than x[drop = TRUE] as x[drop = TRUE] can also coerce mode!
# old (up to rev. 251): index <- data.frame(lapply(index, function(x) x[drop = TRUE]))
}
### end of subsetting index
# delete attribute with old index first:
# this preserves the order of the attributes because
# order of non-standard attributes is scrambled by R's data.frame subsetting with `[.`
# (need to add new index later anyway)
attr(x, "index") <- NULL
# Set class to "data.frame" first to avoid coercing which enlarges the (p)data.frame
# (probably by as.data.frame.pdata.frame).
# Coercing is the built-in behaviour for extraction from data.frames by "[." (see ?`[.data.frame`)
# and it seems this cannot be avoided; thus we need to make sure, not to have any coercing going on
# which adds extra data (such as as.matrix.pseries, as.data.frame.pdata.frame) by setting the class
# to "data.frame" first
class(x) <- "data.frame"
# call [.data.frame exactly as [.pdata.frame was called but arg is now 'x'
# this is necessary because there could be several missing arguments
# use sys.call (and not match.call) because arguments other than drop may not be named
# need to evaluate i, j, drop, if supplied, before passing on (do not pass on as the sys.call caught originally)
sc_mod <- sc
sc_mod[[1L]] <- quote(`[.data.frame`)
sc_mod[[2L]] <- quote(x)
if (!missing.i) sc_mod[[3L]] <- i # if present, i is always in pos 3
if (!missing.j) sc_mod[[4L]] <- j # if present, j is always in pos 4
if (!missing.drop) sc_mod[[length(sc)]] <- drop # if present, drop is always in last position (4 or 5,
# depending on the call structure and whether missing j or not)
mydata <- eval(sc_mod)
if (is.null(dim(mydata))) {
# if dim is NULL, subsetting did not return a data frame but a vector or a
# factor or NULL (nothing more is left)
if (is.null(mydata)) {
# since R 3.4.0, NULL cannot have attributes, so special case it
res <- NULL
} else {
# vector or factor -> make it a pseries
res <- structure(mydata,
names = x.rownames,
index = index,
class = unique(c("pseries", class(mydata))))
}
} else {
# subsetting returned a data.frame -> add attributes to make it a pdata.frame again
res <- structure(mydata,
index = index,
class = c("pdata.frame", "data.frame"))
}
return(res)
}
#' @rdname pdata.frame
#' @export
"[[.pdata.frame" <- function(x, y) {
index <- attr(x, "index")
attr(x, "index") <- NULL
class(x) <- "data.frame"
result <- "[[.data.frame"(x, y)
if (!is.null(result)){
# make extracted column a pseries
# use this order for attributes to preserve original order of attributes for a pseries
result <- structure(result,
names = row.names(x),
class = unique(c("pseries", class(result))),
index = index
)
}
result
}
#' @rdname pdata.frame
#' @export
"$.pdata.frame" <- function(x, y) {
"[[.pdata.frame"(x, paste(as.name(y)))
}
#' @rdname pdata.frame
#' @export
print.pdata.frame <- function(x, ...) {
attr(x, "index") <- NULL
class(x) <- "data.frame"
# This is a workaround: print.data.frame cannot handle
# duplicated row names which are currently possible for pdata frames
if (collapse::any_duplicated(rownames(x))) {
print("Note: pdata.frame contains duplicated row names, thus original row names are not printed")
rownames(x) <- NULL
}
print(x, ...)
}
# pseriesfy() takes a pdata.frame and makes each column a pseries
# names of the pdata.frame are not added to the columns as base R's data.frames
# do not allow for names in columns (but, e.g., a tibble does so since 3.0.0,
# see https://github.com/tidyverse/tibble/issues/837)
#' Turn all columns of a pdata.frame into class pseries.
#'
#' This function takes a pdata.frame and turns all of its columns into
#' objects of class pseries.
#'
#' Background: Initially created pdata.frames have as columns the pure/basic
#' class (e.g., numeric, factor, character). When extracting a column from such
#' a pdata.frame, the extracted column is turned into a pseries.
#'
#' At times, it can be convenient to apply data transformation operations on
#' such a `pseriesfy`-ed pdata.frame, see Examples.
#'
#' @name pseriesfy
#' @param x an object of class `"pdata.frame"`,
#' @param \dots further arguments (currently not used).
#' @return A pdata.frame like the input pdata.frame but with all columns
#' turned into pseries.
#' @seealso [pdata.frame()], [plm::as.list()]
#' @keywords attribute
#' @export
#' @examples
#' library("plm")
#' data("Grunfeld", package = "plm")
#' pGrun <- pdata.frame(Grunfeld[ , 1:4], drop.index = TRUE)
#' pGrun2 <- pseriesfy(pGrun) # pseriesfy-ed pdata.frame
#'
#' # compare classes of columns
#' lapply(pGrun, class)
#' lapply(pGrun2, class)
#'
#' # When using with()
#' with(pGrun, lag(value)) # dispatches to base R's lag()
#' with(pGrun2, lag(value)) # dispatches to plm's lag() respect. panel structure
#'
#' # When lapply()-ing
#' lapply(pGrun, lag) # dispatches to base R's lag()
#' lapply(pGrun2, lag) # dispatches to plm's lag() respect. panel structure
#'
#' # as.list(., keep.attributes = TRUE) on a non-pseriesfy-ed
#' # pdata.frame is similar and dispatches to plm's lag
#' lapply(as.list(pGrun, keep.attributes = TRUE), lag)
#'
pseriesfy <- function(x, ...) {
if(!inherits(x, "pdata.frame")) stop("input 'x' needs to be a pdata.frame")
ix <- attr(x, "index")
nam <- attr(x, "row.names")
pdf <- as.data.frame(lapply(x, function(col) add_pseries_features(col, ix)))
class(pdf) <- c("pdata.frame", class(pdf))
attr(pdf, "index") <- ix
rownames(pdf) <- nam
return(pdf)
}
pseriesfy.collapse <- function(x, ...) {
if(!inherits(x, "pdata.frame")) stop("input 'x' needs to be a pdata.frame")
ix <- attr(x, "index")
return(collapse::dapply(x, function(col) add_pseries_features(col, ix)))
}
# as.list.pdata.frame:
# The default is to behave identical to as.list.data.frame.
# This default is necessary, because some code relies on this
# behaviour! Do not change this!
#
# as.list.data.frame does:
# * unclass
# * strips all classes but "list"
# * strips row.names
#
# By setting argument keep.attributes = TRUE, the attributes of the pdata.frame
# are preserved by as.list.pdata.frame: a list of pseries is returned
# and lapply can be used as usual, now working on a list of pseries, e.g.,
# lapply(as.list(pdata.frame[ , your_cols], keep.attributes = TRUE), lag)
# works as expected.
#' @rdname pdata.frame
#' @export
as.list.pdata.frame <- function(x, keep.attributes = FALSE, ...) {
if (!keep.attributes) {
x <- as.list.data.frame(x)
} else {
# make list of pseries objects
x_names <- names(x)
x <- lapply(x_names,
FUN = function(element, pdataframe){
"[[.pdata.frame"(x = pdataframe, y = element)
},
pdataframe = x)
names(x) <- x_names
# note: this function is slower than the corresponding
# as.list.data.frame function,
# because we cannot simply use unclass() on the pdata.frame:
# need to add index etc to all columns to get proper pseries
# back => thus the extraction function "[[.pdata.frame" is used
}
return(x)
}
#' @rdname pdata.frame
#' @export
as.data.frame.pdata.frame <- function(x, row.names = NULL, optional = FALSE, keep.attributes = TRUE, ...) {
index <- attr(x, "index")
if(!keep.attributes) {
attr(x, "index") <- NULL
class(x) <- "data.frame"
rownames(x) <- NULL
} else {
# make each column a pseries (w/o names)
x <- lapply(x,
function(z){
# names(z) <- row.names(x) # it is not possible to keep the names in the 'pseries'/
# in columns because the call to data.frame later deletes
# the names attribute of columns (definition of data frame)
attr(z, "index") <- index
class(z) <- unique(c("pseries", class(z)))
return(z)
})
}
if(is.null(row.names)) {
# do as base::as.data.frame does for NULL
x <- as.data.frame(x, row.names = NULL)
} else {
# argument check
if(!(isTRUE(row.names) || isFALSE(row.names) || is.character(row.names)))
stop("argument 'row.names' is none of NULL, FALSE, TRUE, and not a character")
if(is.logical(row.names) && row.names == FALSE) {
# set row names to integer sequence 1, 2, 3, ...
x <- as.data.frame(x)
row.names(x) <- NULL
}
if(is.logical(row.names) && row.names == TRUE) {
# set fancy row names
x <- as.data.frame(x)
row.names(x) <- fancy.row.names(index)
}
if(is.character(row.names)) {
x <- as.data.frame(x)
row.names(x) <- row.names
}
# using row.names(x) <- "something" is safer (does not allow
# duplicate row.names) than # attr(x,"row.names") <- "something"
}
return(x)
}
#' Check if an object is a pseries
#'
#' This function checks if an object qualifies as a pseries
#'
#' A `"pseries"` is a wrapper around a "basic class" (numeric, factor,
#' logical, character, or complex).
#'
#' To qualify as a pseries, an object needs to have the following
#' features:
#'
#' - class contains `"pseries"` and there are at least two classes
#' (`"pseries"` and the basic class),
#'
#' - have an appropriate index attribute (defines the panel
#' structure),
#'
#' - any of `is.numeric`, `is.factor`, `is.logical`, `is.character`,
#' `is.complex` is `TRUE`.
#'
#' @param object object to be checked for pseries features
#'
#' @export
#' @return A logical indicating whether the object is a pseries (`TRUE`)
#' or not (`FALSE`).
#' @seealso [pseries()] for some computations on pseries and some
#' further links.
#' @keywords attribute
#' @examples
#'
#' # Create a pdata.frame and extract a series, which becomes a pseries
#' data("EmplUK", package = "plm")
#' Em <- pdata.frame(EmplUK)
#' z <- Em$output
#'
#' class(z) # pseries as indicated by class
#' is.pseries(z) # and confirmed by check
#'
#' # destroy index of pseries and re-check
#' attr(z, "index") <- NA
#' is.pseries(z) # now FALSE
#'
is.pseries <- function(object) {
# checks if an object has the necessary features to qualify as a 'pseries'
res <- TRUE
if (!inherits(object, "pseries")) res <- FALSE
# class 'pseries' is always on top of basic class: min 2 classes needed, if 2 classes "pseries" needs to be first entry
if (!length(class(object)) >= 2L) res <- FALSE
if (length(class(object)) == 2L && class(object)[1L] != "pseries") res <- FALSE
if (!has.index(object)) res <- FALSE
if (!any(c(is.numeric(object), is.factor(object), is.logical(object),
is.character(object), is.complex(object)))) {
res <- FALSE
}
return(res)
}
#' Check for the Dimensions of the Panel
#'
#' This function checks the number of individuals and time observations in the
#' panel and whether it is balanced or not.
#'
#' `pdim` is called by the estimation functions and can be also used
#' stand-alone.
#'
#' @name pdim
#' @aliases pdim
#' @param x a `data.frame`, a `pdata.frame`, a `pseries`, a
#' `panelmodel`, or a `pgmm` object,
#' @param y a vector,
#' @param index see [pdata.frame()],
#' @param \dots further arguments.
#' @return An object of class `pdim` containing the following
#' elements:
#'
#' \item{nT}{a list containing `n`, the number of individuals, `T`,
#' the number of time observations, `N` the total number of
#' observations,}
#'
#' \item{Tint}{a list containing two vectors (of type integer): `Ti`
#' gives the number of observations for each individual and `nt` gives
#' the number of individuals observed for each period,}
#'
#' \item{balanced}{a logical value: `TRUE` for a balanced panel,
#' `FALSE` for an unbalanced panel,}
#'
#' \item{panel.names}{a list of character vectors: `id.names` contains
#' the names of each individual and `time.names` contains the names of
#' each period.}
#'
#' @note Calling `pdim` on an estimated `panelmodel` object
#' and on the corresponding `(p)data.frame` used for this
#' estimation does not necessarily yield the same result. When
#' called on an estimated `panelmodel`, the number of
#' observations (individual, time) actually used for model
#' estimation are taken into account. When called on a
#' `(p)data.frame`, the rows in the `(p)data.frame` are
#' considered, disregarding any `NA` values in the dependent or
#' independent variable(s) which would be dropped during model
#' estimation.
#' @export
#' @author Yves Croissant
#' @seealso [is.pbalanced()] to just determine balancedness
#' of data (slightly faster than `pdim`),\cr
#' [punbalancedness()] for measures of
#' unbalancedness,\cr [nobs()],
#' [pdata.frame()],\cr [pvar()] to check for
#' each variable if it varies cross-sectionally and over time.
#' @keywords attribute
#' @examples
#'
#' # There are 595 individuals
#' data("Wages", package = "plm")
#' pdim(Wages, 595)
#'
#' # Gasoline contains two variables which are individual and time
#' # indexes and are the first two variables
#' data("Gasoline", package="plm")
#' pdim(Gasoline)
#'
#' # Hedonic is an unbalanced panel, townid is the individual index
#' data("Hedonic", package = "plm")
#' pdim(Hedonic, "townid")
#'
#' # An example of the panelmodel method
#' data("Produc", package = "plm")
#' z <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp,data=Produc,
#' model="random", subset = gsp > 5000)
#' pdim(z)
#'
pdim <- function(x, ...) {
UseMethod("pdim")
}
#' @rdname pdim
#' @export
pdim.default <- function(x, y, ...) {
if (length(x) != length(y)) stop("The length of the two inputs differs\n")
x <- x[drop = TRUE] # drop unused factor levels so that table()
y <- y[drop = TRUE] # gives only needed combinations
z <- collapse::qtable(x, y) ## == base R's table(x, y)
Ti <- rowSums(z) # faster than: apply(z, 1, sum)
nt <- colSums(z) # apply(z, 2, sum)
n <- nrow(z)
T <- ncol(z)
N <- length(x)
nT <- list(n = n, T = T, N = N)
id.names <- rownames(z)
time.names <- colnames(z)
panel.names <- list(id.names = id.names, time.names = time.names)
balanced <- if(any(z <- as.vector(z) == 0)) FALSE else TRUE
if(any(z > 1)) stop("duplicate couples (id-time)\n")
Tint <- list(Ti = Ti, nt = nt)
z <- list(nT = nT, Tint = Tint, balanced = balanced, panel.names = panel.names)
class(z) <- "pdim"
z
}
#' @rdname pdim
#' @export
pdim.data.frame <- function(x, index = NULL, ...) {
x <- pdata.frame(x, index)
index <- unclass(attr(x, "index"))
pdim(index[[1L]], index[[2L]])
}
#' @rdname pdim
#' @export
pdim.pdata.frame <- function(x,...) {
index <- unclass(attr(x, "index"))
pdim(index[[1L]], index[[2L]])
}
#' @rdname pdim
#' @export
pdim.pseries <- function(x,...) {
index <- unclass(attr(x, "index"))
pdim(index[[1L]], index[[2L]])
}
#' @rdname pdim
#' @export
pdim.pggls <- function(x, ...) {
## pggls is also class panelmodel, but take advantage of the pdim attribute in it
attr(x, "pdim")
}
#' @rdname pdim
#' @export
pdim.pcce <- function(x, ...) {
## pcce is also class panelmodel, but take advantage of the pdim attribute in it
attr(x, "pdim")
}
#' @rdname pdim
#' @export
pdim.pmg <- function(x, ...) {
## pmg is also class panelmodel, but take advantage of the pdim attribute in it
attr(x, "pdim")
}
#' @rdname pdim
#' @export
pdim.pgmm <- function(x, ...) {
## pgmm is also class panelmodel, but take advantage of the pdim attribute in it
attr(x, "pdim")
}
#' @rdname pdim
#' @export
pdim.panelmodel <- function(x, ...) {
x <- model.frame(x)
pdim(x)
}
#' @rdname pdim
#' @export
print.pdim <- function(x, ...) {
if (x$balanced){
cat("Balanced Panel: ")
cat(paste("n = ", x$nT$n, ", ", sep=""))
cat(paste("T = ", x$nT$T, ", ", sep=""))
cat(paste("N = ", x$nT$N, "\n", sep=""))
}
else{
cat("Unbalanced Panel: ")
cat(paste("n = ", x$nT$n,", ", sep=""))
cat(paste("T = ", min(x$Tint$Ti), "-", max(x$Tint$Ti), ", ", sep=""))
cat(paste("N = ", x$nT$N, "\n", sep=""))
}
invisible(pdim)
}
########### is.pbalanced ##############
### for convenience and to be faster than pdim() for the purpose
### of the determination of balancedness only, because it avoids
### pdim()'s calculations which are unnecessary for balancedness.
###
### copied (and adapted) methods and code from pdim.*
### (only relevant parts to determine balancedness)
#' Check if data are balanced
#'
#' This function checks if the data are balanced, i.e., if each individual has
#' the same time periods
#'
#' Balanced data are data for which each individual has the same time periods.
#' The returned values of the `is.pbalanced(object)` methods are identical
#' to `pdim(object)$balanced`. `is.pbalanced` is provided as a short
#' cut and is faster than `pdim(object)$balanced` because it avoids those
#' computations performed by `pdim` which are unnecessary to determine the
#' balancedness of the data.
#'
#' @aliases is.pbalanced
#' @param x an object of class `pdata.frame`, `data.frame`,
#' `pseries`, `panelmodel`, or `pgmm`,
#' @param y (only in default method) the time index variable (2nd index
#' variable),
#' @param index only relevant for `data.frame` interface; if
#' `NULL`, the first two columns of the data.frame are
#' assumed to be the index variables; if not `NULL`, both
#' dimensions ('individual', 'time') need to be specified by
#' `index` as character of length 2 for data frames, for
#' further details see [pdata.frame()],
#' @param \dots further arguments.
#' @return A logical indicating whether the data associated with
#' object `x` are balanced (`TRUE`) or not
#' (`FALSE`).
#' @seealso [punbalancedness()] for two measures of
#' unbalancedness, [make.pbalanced()] to make data
#' balanced; [is.pconsecutive()] to check if data are
#' consecutive; [make.pconsecutive()] to make data
#' consecutive (and, optionally, also balanced).\cr
#' [pdim()] to check the dimensions of a 'pdata.frame'
#' (and other objects), [pvar()] to check for individual
#' and time variation of a 'pdata.frame' (and other objects),
#' [pseries()], [data.frame()],
#' [pdata.frame()].
#' @export
#' @keywords attribute
#' @examples
#'
#' # take balanced data and make it unbalanced
#' # by deletion of 2nd row (2nd time period for first individual)
#' data("Grunfeld", package = "plm")
#' Grunfeld_missing_period <- Grunfeld[-2, ]
#' is.pbalanced(Grunfeld_missing_period) # check if balanced: FALSE
#' pdim(Grunfeld_missing_period)$balanced # same
#'
#' # pdata.frame interface
#' pGrunfeld_missing_period <- pdata.frame(Grunfeld_missing_period)
#' is.pbalanced(Grunfeld_missing_period)
#'
#' # pseries interface
#' is.pbalanced(pGrunfeld_missing_period$inv)
#'
is.pbalanced <- function(x, ...) {
UseMethod("is.pbalanced")
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.default <- function(x, y, ...) {
if (length(x) != length(y)) stop("The length of the two inputs differs\n")
x <- x[drop = TRUE] # drop unused factor levels so that table
y <- y[drop = TRUE] # gives only needed combinations
z <- collapse::qtable(x, y) # == base R's table(x, y)
balanced <- if(any(v <- as.vector(z) == 0L)) FALSE else TRUE
if (any(v > 1L)) warning("duplicate couples (id-time)\n")
balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.data.frame <- function(x, index = NULL, ...) {
x <- pdata.frame(x, index)
index <- unclass(attr(x, "index")) # unclass for speed
is.pbalanced(index[[1L]], index[[2L]])
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pdata.frame <- function(x, ...) {
index <- unclass(attr(x, "index")) # unclass for speed
is.pbalanced(index[[1L]], index[[2L]])
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pseries <- function(x, ...) {
index <- unclass(attr(x, "index")) # unclass for speed
is.pbalanced(index[[1L]], index[[2L]])
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pggls <- function(x, ...) {
# pggls is also class panelmodel, but take advantage of its pdim attribute
attr(x, "pdim")$balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pcce <- function(x, ...) {
# pcce is also class panelmodel, but take advantage of its pdim attribute
attr(x, "pdim")$balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pmg <- function(x, ...) {
# pmg is also class panelmodel, but take advantage of its pdim attribute
attr(x, "pdim")$balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.pgmm <- function(x, ...) {
# pgmm is also class panelmodel, but take advantage of its pdim attribute
attr(x, "pdim")$balanced
}
#' @rdname is.pbalanced
#' @export
is.pbalanced.panelmodel <- function(x, ...) {
x <- model.frame(x)
is.pbalanced(x)
}
#' Extract the indexes of panel data
#'
#' This function extracts the information about the structure of the
#' individual and time dimensions of panel data. Grouping information
#' can also be extracted if the panel data were created with a
#' grouping variable.
#'
#' Panel data are stored in a `"pdata.frame"` which has an `"index"`
#' attribute. Fitted models in `"plm"` have a `"model"` element which
#' is also a `"pdata.frame"` and therefore also has an `"index"`
#' attribute. Finally, each series, once extracted from a
#' `"pdata.frame"`, becomes of class `"pseries"`, which also has this
#' `"index"` attribute. `"index"` methods are available for all these
#' objects. The argument `"which"` indicates which index should be
#' extracted. If `which = NULL`, all indexes are extracted. `"which"`
#' can also be a vector of length 1, 2, or 3 (3 only if the pdata
#' frame was constructed with an additional group index) containing
#' either characters (the names of the individual variable and/or of
#' the time variable and/or the group variable or `"id"` and `"time"`)
#' and `"group"` or integers (1 for the individual index, 2 for the
#' time index, and 3 for the group index (the latter only if the pdata
#' frame was constructed with such).)
#'
#' @name index.plm
#' @aliases index
#' @importFrom zoo index
#' @export index
#' @param x an object of class `"pindex"`, `"pdata.frame"`,
#' `"pseries"` or `"panelmodel"`,
#' @param which the index(es) to be extracted (see details),
#' @param \dots further arguments.
#' @return A vector or an object of class `c("pindex","data.frame")`
#' containing either one index, individual and time index, or (any
#' combination of) individual, time and group indexes.
#' @author Yves Croissant
#' @seealso [pdata.frame()], [plm()]
#' @keywords attribute
#' @examples
#'
#' data("Grunfeld", package = "plm")
#' Gr <- pdata.frame(Grunfeld, index = c("firm", "year"))
#' m <- plm(inv ~ value + capital, data = Gr)
#' index(Gr, "firm")
#' index(Gr, "time")
#' index(Gr$inv, c(2, 1))
#' index(m, "id")
#'
#' # with additional group index
#' data("Produc", package = "plm")
#' pProduc <- pdata.frame(Produc, index = c("state", "year", "region"))
#' index(pProduc, 3)
#' index(pProduc, "region")
#' index(pProduc, "group")
#'
NULL
#' @rdname index.plm
#' @export
index.pindex <- function(x, which = NULL, ...) {
if (is.null(which)) {
# if no specific index is requested, select all index variables
which <- names(x)
}
else{
# catch case when someone enters "individual" albeit proper value is
# "id" to extract individual index
posindividual <- match("individual", which)
if (! is.na(posindividual)) which[posindividual] <- "id"
}
if (length(which) > 3L) stop("the length of argument 'which' should be at most 3")
if (is.numeric(which)){
if (! all(which %in% 1:3))
stop("if integer, argument 'which' should contain only 1, 2 and/or 3")
if (ncol(x) == 2L && 3 %in% which) stop("no grouping variable, only 2 indexes")
which <- names(x)[which]
}
nindex <- names(x)
gindex <- c("id", "time")
if (ncol(x) == 3L) gindex <- c(gindex, "group")
if (any(! which %in% c(nindex, gindex))) stop("unknown variable")
if ("id" %in% which) {
which[which == "id"] <- names(x)[1L]
if("id" %in% names(x)[-1L]) warning("an index variable not being the invidiual index is called 'id'. Likely, any results are distorted.")
}
if ("time" %in% which) {
which[which == "time"] <- names(x)[2L]
if("time" %in% names(x)[-2L]) warning("an index variable not being the time index is called 'time'. Likely, any results are distorted.")
}
if (ncol(x) == 3L) if ("group" %in% which) {
which[which == "group"] <- names(x)[3L]
if("group" %in% names(x)[-3L]) warning("an index variable not being the group index is called 'group'. Likely, any results are distorted.")
}
result <- x[ , which]
result
}
#' @rdname index.plm
#' @export
index.pdata.frame <- function(x, which = NULL, ...) {
anindex <- attr(x, "index")
index(x = anindex, which = which)
}
#' @rdname index.plm
#' @export
index.pseries <- function(x, which = NULL, ...) {
anindex <- attr(x, "index")
index(x = anindex, which = which)
}
#' @rdname index.plm
#' @export
index.panelmodel <- function(x, which = NULL, ...) {
anindex <- attr(x$model, "index")
index(x = anindex, which = which)
}
is.index <- function(index) {
# not exported, helper function
# checks if the index is an index in the sense of package plm
res <- TRUE
if(!all(class(index) == c("pindex", "data.frame"))) res <- FALSE
if(!is.null(n <- ncol(index)) && !(n %in% c(2, 3))) res <- FALSE
res
}
has.index <- function(object) {
# not exported, helper function
# checks if an object has an index in sense of package plm
# (esp. to distinguish from zoo::index() which always returns an index)
index <- attr(object, "index")
return(is.index(index))
}
checkNA.index <- function(index, which = "all", error = TRUE) {
# not exported, helper function
#
# check if any NA in indexes (all or specific dimension)
#
# index can be of class pindex (proper index attribute of pdata.frame/pseries
# or a list of factors, thus can call checkNA.index(unclass(proper_index)))
# which gives a speed up as the faster list-subetting is used (instead of the
# relatively slower data.frame-subsetting)
feedback <- if(error) stop else warning
if(which == "all") {
if(anyNA(index[[1L]])) feedback("NA in the individual index variable")
if(anyNA(index[[2L]])) feedback("NA in the time index variable")
n.index <- if(inherits(index, "pindex")) ncol(index) else length(index) # else-branch is list (for speed)
if(n.index == 3L) { if(anyNA(index[[3L]])) feedback("NA in the group index variable") }
}
if(which == 1L) {
if(anyNA(index[[1L]])) feedback("NA in the individual index variable")
}
if(which == 2L) {
if(anyNA(index[[2L]])) feedback("NA in the time index variable")
}
if(which == 3L) {
if(anyNA(index[[3L]])) feedback("NA in the group index variable")
}
NULL
}
make.fdindex <- function(x) {
## non-exported helper function
## constructs an index suitable for time-wise first-difference data
## input: an index (class c("pindex", "data.frame"))
## return value: plain 2-entry list of the index factors
ix <- unclass(x)
ix.ind.lag <- lag(add_pseries_features(ix[[1L]], ix))
ix.ti.lag <- lag(add_pseries_features(ix[[2L]], ix))
na <- is.na(ix.ind.lag) # NAs are in same positions for ind and time index
ix.ind.lag <- ix.ind.lag[!na]
ix.ti.lag <- ix.ti.lag[!na]
list(ix.ind.lag, ix.ti.lag)
}
# pos.index:
# not exported, helper function
#
# determines column numbers of the index variables in a pdata.frame
# returns named numeric of length 2 or 3 with column numbers of the index variables
# (1: individual index, 2: time index, if available 3: group index),
# names are the names of the index variables
#
# returns c(NA, NA) / c(NA, NA, NA) if the index variables are not a column in the pdata.frame
# (e.g., for pdata.frames created with drop.index = TRUE).
# Cannot detect index variables if their columns names were changed after creation of the pdata.frame
pos.index <- function(x, ...) {
index <- attr(x, "index")
index_names <- names(index)
index_pos <- match(index_names, names(x))
names(index_pos) <- index_names
return(index_pos)
}
is.pdata.frame <- function(x, feedback = NULL) {
# not exported, helper function
# checks if a pdata.frame has appropriate properties
res <- TRUE
if(!inherits(x, "pdata.frame")) res <- FALSE
if(!has.index(x)) res <- FALSE
if(!nrow(index(x)) == nrow(x)) res <- FALSE
if(!res && !is.null(feedback)) {
feedback <- switch(feedback,
"error" = stop,
"warn" = warning)
feedback.txt <- paste0("input data claims to be a pdata.frame but does not seem to have compliant properties, ",
"results can be unreliable. This can happen due to data manipulation by ",
"non-pdata.frame-aware functions (e.g., 'dplyr' on pdata.frame). \n Maybe re-create ",
"data input as fresh pdata.frame after last data manipulation with other tools.")
feedback(feedback.txt)
}
res
}
check.pdata.frame <- function(x) {
# not exported, helper function
# checks if a pdata.frame has appropriate properties
# Like is.pdata.frame but with error output about ill-specification
stopifnot(inherits(x, "pdata.frame"))
stopifnot(has.index(x))
stopifnot(nrow(index(x)) == nrow(x))
NULL
}
pseries2pdataframe <- function(x, pdata.frame = TRUE, ...) {
## non-exported
## Transforms a pseries in a (p)data.frame with the indices as regular columns
## in positions 1, 2 and (if present) 3 (individual index, time index, group index).
## if pdataframe = TRUE -> return a pdata.frame, if FALSE -> return a data.frame
## ellipsis (dots) passed on to pdata.frame()
if(!inherits(x, "pseries")) stop("input needs to be of class 'pseries'")
indices <- attr(x, "index")
class(indices) <- setdiff(class(indices), "pindex")
vx <- remove_pseries_features(x)
dfx <- cbind(indices, vx)
dimnames(dfx)[[2L]] <- c(names(indices), deparse(substitute(x)))
res <- if(pdata.frame == TRUE) {
pdata.frame(dfx, index = names(indices), ...)
} else { dfx }
return(res)
}
pmerge <- function(x, y, ...) {
## non-exported
## Returns a data.frame, not a pdata.frame.
## pmerge is used to merge pseries or pdata.frames into a data.frame or
## to merge a pseries to a data.frame
## transf. if pseries or pdata.frame
if(inherits(x, "pseries")) x <- pseries2pdataframe(x, pdata.frame = FALSE)
if(inherits(y, "pseries")) y <- pseries2pdataframe(y, pdata.frame = FALSE)
if(inherits(x, "pdata.frame")) x <- as.data.frame(x, keep.attributes = FALSE)
if(inherits(y, "pdata.frame")) y <- as.data.frame(y, keep.attributes = FALSE)
# input to merge() needs to be data.frames; not yet suitable for 3rd index (group variable)
z <- merge(x, y,
by.x = dimnames(x)[[2L]][1:2],
by.y = dimnames(y)[[2L]][1:2], ...)
return(z)
}
## dplyr "compatibility"/awareness/warning, see https://github.com/ycroissant/plm/issues/46
# test in test_pdata.frame_compliant.R
#
# Approach: Avoid dplyr-dependency albeit registering methods for it, needs the
# utils::globalVariables() statement to avoid a NOTE in R CMD check about
# undefined global variable.
# Shall CRAN ever increase the code checking strictness, the approach with a
# Suggests-dependency is given commented below as well.
utils::globalVariables("arrange")
#' @rawNamespace if(getRversion() >= "3.6.0") {S3method(dplyr::arrange, pdata.frame)}
arrange.pdata.frame <- function(.data, ..., .by_group = FALSE, .locale = NULL) {
# function signature of dplyr:::arrange.data.frame
idx <- index(.data)
ag.data <- NextMethod()
ag.idx <- arrange(idx, ..., .by_group = FALSE, .locale = NULL) # dispatches to arrange.pindex
attr(ag.data, "index") <- ag.idx
ag.data
}
#' @rawNamespace if(getRversion() >= "3.6.0") {S3method(dplyr::arrange, pindex)}
arrange.pindex <- function(.data, ..., .by_group = .by_group, .locale = .locale) {
NextMethod()
}
### alternatives
# arrange.pdata.frame <- function(.data, ..., .by_group = FALSE, .locale = NULL) {
# ### this alternative would require dplyr to be at least a Suggests-dependency
# stopifnot(requireNamespace("dplyr"))
# idx <- index(.data)
# ag.df <- dplyr::arrange(.data, ..., .by_group = FALSE, .locale = NULL)
# ag.idx <- dplyr::arrange(idx, ..., .by_group = FALSE, .locale = NULL)
# attr(ag.df, "index") <- ag.idx
# ag.df
# }
# arrange.pdata.frame <- function(.data, ..., .by_group = FALSE, .locale = NULL) {
# # this alternative just warns and executes dplyr's plain arrange destroying the index
# wrn <- paste0("dplyr::arrange not safe on pdata.frames!\n",
# "Before input to estimation and test functions of package plm, ",
# "create a fresh pdata.frame from the dplyr-manipulated data to be safe")
# warning(wrn)
# NextMethod()
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.