View source: R/simul_data_YX.R
simul_data_YX | R Documentation |
This function generates a single multivariate response value
\boldsymbol{Y}
and a vector of explinatory variables
(X_1,\ldots,X_{totdim})
drawn from a model with a given number of
latent components.
simul_data_YX(totdim, ncomp)
totdim |
Number of column of the X vector (from |
ncomp |
Number of latent components in the model (from 2 to 6) |
This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.
vector |
|
The value of r
depends on the value of ncomp
:
ncomp | r |
2 | 3 |
3 | 3 |
4 | 4 |
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
T. Naes, H. Martens, Comparison of prediction methods for
multicollinear data, Commun. Stat., Simul. 14 (1985) 545-576.
Morris, Elaine B. Martin, Model selection for partial least squares
regression, Chemometrics and Intelligent Laboratory Systems 64 (2002)
79-89, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/S0169-7439(02)00051-5")}.
simul_data_complete
for highlighting the simulations
parameters
simul_data_YX(20,6)
if(require(plsdepot)){
dimX <- 6
Astar <- 2
(dataAstar2 <- t(replicate(50,simul_data_YX(dimX,Astar))))
library(plsdepot)
resAstar2 <- plsreg2(dataAstar2[,4:9],dataAstar2[,1:3],comps=5)
resAstar2$Q2
resAstar2$Q2[,4]>0.0975
dimX <- 6
Astar <- 3
(dataAstar3 <- t(replicate(50,simul_data_YX(dimX,Astar))))
library(plsdepot)
resAstar3 <- plsreg2(dataAstar3[,4:9],dataAstar3[,1:3],comps=5)
resAstar3$Q2
resAstar3$Q2[,4]>0.0975
dimX <- 6
Astar <- 4
(dataAstar4 <- t(replicate(50,simul_data_YX(dimX,Astar))))
library(plsdepot)
resAstar4 <- plsreg2(dataAstar4[,5:10],dataAstar4[,1:4],comps=5)
resAstar4$Q2
resAstar4$Q2[,5]>0.0975
rm(list=c("dimX","Astar"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.