Nothing
#' Summary method for plsRglm models
#'
#' This function provides a summary method for the class
#' \code{"cv.plsRglmmodel"}
#'
#'
#' @param object an object of the class \code{"cv.plsRglmmodel"}
#' @param \dots further arguments to be passed to or from methods.
#' @return An object of class \code{"summary.cv.plsRmodel"} if \code{model} is
#' missing or \code{model="pls"}. Otherwise an object of class
#' \code{"summary.cv.plsRglmmodel"}.
#' @author Frédéric Bertrand\cr
#' \email{frederic.bertrand@@utt.fr}\cr
#' \url{https://fbertran.github.io/homepage/}
#' @seealso \code{\link{summary}}
#' @references Nicolas Meyer, Myriam Maumy-Bertrand et
#' Frédéric Bertrand (2010). Comparing the linear and the
#' logistic PLS regression with qualitative predictors: application to
#' allelotyping data. \emph{Journal de la Societe Francaise de Statistique},
#' 151(2), pages 1-18.
#' \url{http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47}
#' @keywords methods print
#' @examples
#'
#' data(Cornell)
#' XCornell<-Cornell[,1:7]
#' yCornell<-Cornell[,8]
#' summary(cv.plsRglm(Y~.,data=Cornell,nt=10,NK=1,
#' modele="pls-glm-family",family=gaussian(), verbose=FALSE))
#' rm(list=c("XCornell","yCornell","bbb"))
#'
#' @export
summary.cv.plsRglmmodel <- function(object, ...)
{
res <- kfolds2CVinfos_glm(object, ...)
if(is.null(object$call$model)){
class(res) <- "summary.cv.plsRmodel"
} else {
if(object$call$model=="pls"){
class(res) <- "summary.cv.plsRmodel"
} else {
class(res) <- "summary.cv.plsRglmmodel"
}
}
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.