Nothing
#' @include internal.R Penalty-class.R marxan_connectivity_data_to_matrix.R
NULL
#' Add neighbor penalties
#'
#' Add penalties to a conservation planning problem to penalize solutions
#' that have few neighboring planning units. These penalties can be used
#' to promote spatial clustering in solutions. In particular, they are
#' recommended for reducing spatial fragmentation in large-scale problems
#' or when using open source solvers.
#'
#' @inheritParams add_neighbor_constraints
#'
#' @inheritParams add_connectivity_penalties
#'
#' @details
#' This function adds penalties to conservation planning problem to penalize
#' solutions that have low spatial clustering.
#' Specifically, it favors pair-wise connections between planning units
#' that have high connectivity values (based on Önal and Briers 2002).
#'
#' @inheritSection add_neighbor_constraints Data format
#'
#' @section Mathematical formulation:
#' The neighbor penalties are implemented using the following equations.
#' Let \eqn{I} represent the set of planning units
#' (indexed by \eqn{i} or \eqn{j}), \eqn{Z} represent the set
#' of management zones (indexed by \eqn{z} or \eqn{y}), and \eqn{X_{iz}}{Xiz}
#' represent the decision variable for planning unit \eqn{i} for in zone
#' \eqn{z} (e.g., with binary
#' values one indicating if planning unit is allocated or not). Also, let
#' \eqn{p} represent the argument to `penalty`, \eqn{D} represent the
#' argument to `data` , and \eqn{W} represent the argument
#' to `zones`.
#'
#' If the argument to `data` is supplied as a `matrix` or
#' `Matrix` object, then the penalties are calculated as:
#'
#' \deqn{
#' \sum_{i}^{I} \sum_{j}^{I} \sum_{z}^{Z} \sum_{y}^{Z} (-p \times X_{iz}
#' \times X_{jy} \times D_{ij} \times W_{zy})}{
#' sum_i^I sum_j^I sum_z^Z sum_y^Z (-p * Xiz * Xjy * Dij * Wzy)
#' }
#'
#' Otherwise, if the argument to `data` is supplied as a
#' `data.frame` or `array` object, then the penalties are
#' calculated as:
#'
#' \deqn{
#' \sum_{i}^{I} \sum_{j}^{I} \sum_{z}^{Z} \sum_{y}^{Z} (-p \times X_{iz}
#' \times X_{jy} \times D_{ijzy})}{
#' sum_i^I sum_j^I sum_z^Z sum_y^Z (-p * Xiz * Xjy * Dijzy)
#' }
#'
#' Note that when the problem objective is to maximize some measure of
#' benefit and not minimize some measure of cost, the term \eqn{-p} is
#' replaced with \eqn{p}.
#'
#' @inherit add_linear_penalties return seealso
#'
#' @family penalties
#'
#' @encoding UTF-8
#'
#' @references
#' Williams JC, ReVelle CS, and Levin SA (2005) Spatial attributes and reserve
#' design models: A review. *Environmental Modeling and Assessment*, 10:
#' 163--181.
#'
#' @examples
#' \dontrun{
#' # load data
#' sim_pu_raster <- get_sim_pu_raster()
#' sim_features <- get_sim_features()
#' sim_zones_pu_raster <- get_sim_zones_pu_raster()
#' sim_zones_features <- get_sim_zones_features()
#'
#' # create minimal problem
#' p1 <-
#' problem(sim_pu_raster, sim_features) %>%
#' add_min_set_objective() %>%
#' add_relative_targets(0.1) %>%
#' add_default_solver(verbose = FALSE)
#'
#' # create problem with low neighbor penalties and
#' # using a rook-style neighborhood (the default neighborhood style)
#' p2 <- p1 %>% add_neighbor_penalties(0.001)
#'
#' # create problem with high penalties
#' # using a rook-style neighborhood (the default neighborhood style)
#' p3 <- p1 %>% add_neighbor_penalties(0.01)
#'
#' # create problem with high penalties and using a queen-style neighborhood
#' p4 <-
#' p1 %>%
#' add_neighbor_penalties(
#' 0.01, data = adjacency_matrix(sim_pu_raster, directions = 8)
#' )
#'
#' # solve problems
#' s1 <- c(solve(p1), solve(p2), solve(p3), solve(p4))
#' names(s1) <- c("basic solution", "low (rook)", "high (rook)", "high (queen")
#'
#' # plot solutions
#' plot(s1, axes = FALSE)
#'
#' # create minimal problem with multiple zones
#' p5 <-
#' problem(sim_zones_pu_raster, sim_zones_features) %>%
#' add_min_set_objective() %>%
#' add_relative_targets(matrix(0.1, ncol = 3, nrow = 5)) %>%
#' add_default_solver(verbose = FALSE)
#'
#' # create problem with low neighbor penalties, a rook style neighborhood,
#' # and planning units are only considered neighbors if they are allocated to
#' # the same zone
#' z6 <- diag(3)
#' print(z6)
#' p6 <- p5 %>% add_neighbor_penalties(0.001, zones = z6)
#'
#' # create problem with high penalties and the same neighborhood as above
#' p7 <- p5 %>% add_neighbor_penalties(0.01, zones = z6)
#'
#' # create problem with high neighborhood penalties, a queen-style
#' # neighborhood, neighboring planning units that are allocated to zones 1
#' # or 2 are treated as neighbors
#' z8 <- diag(3)
#' z8[1, 2] <- 1
#' z8[2, 1] <- 1
#' print(z8)
#' p8 <- p5 %>% add_neighbor_penalties(0.01, zones = z8)
#'
#' # create problem with high neighborhood penalties, a queen-style
#' # neighborhood, and here we want to promote spatial fragmentation
#' # within each zone, so we use negative zone values.
#' z9 <- diag(3) * -1
#' print(z9)
#' p9 <- p5 %>% add_neighbor_penalties(0.01, zones = z9)
#'
#' # solve problems
#' s2 <- list(p5, p6, p7, p8, p9)
#' s2 <- lapply(s2, solve)
#' s2 <- lapply(s2, category_layer)
#' s2 <- terra::rast(s2)
#' names(s2) <- c("basic problem", "p6", "p7", "p8", "p9")
#'
#' # plot solutions
#' plot(s2, main = names(s2), axes = FALSE)
#' }
#' @name add_neighbor_penalties
#'
#' @exportMethod add_neighbor_penalties
#'
#' @aliases add_neighbor_penalties,ConservationProblem,ANY,ANY,Matrix-method add_neighbor_penalties,ConservationProblem,ANY,ANY,matrix-method add_neighbor_penalties,ConservationProblem,ANY,ANY,ANY-method add_neighbor_penalties,ConservationProblem,ANY,ANY,data.frame-method add_neighbor_penalties,ConservationProblem,ANY,ANY,array-method
NULL
#' @export
methods::setGeneric("add_neighbor_penalties",
signature = methods::signature("x", "penalty", "zones", "data"),
function(x, penalty, zones = diag(number_of_zones(x)), data = NULL) {
assert_required(x)
assert_required(penalty)
assert_required(zones)
assert_required(data)
assert(
is_conservation_problem(x),
is_inherits(
data,
c("NULL", "dgCMatrix", "data.frame", "matrix", "Matrix", "array")
)
)
standardGeneric("add_neighbor_penalties")
}
)
#' @name add_neighbor_penalties
#' @usage \S4method{add_neighbor_penalties}{ConservationProblem,ANY,ANY,matrix}(x, penalty, zones, data)
#' @rdname add_neighbor_penalties
methods::setMethod("add_neighbor_penalties",
methods::signature("ConservationProblem", "ANY", "ANY", "matrix"),
function(x, penalty, zones, data) {
add_neighbor_penalties(
x, penalty, zones, as_Matrix(data, "dgCMatrix")
)
}
)
#' @name add_neighbor_penalties
#' @usage \S4method{add_neighbor_penalties}{ConservationProblem,ANY,ANY,data.frame}(x, penalty, zones, data)
#' @rdname add_neighbor_penalties
methods::setMethod("add_neighbor_penalties",
methods::signature("ConservationProblem", "ANY", "ANY", "data.frame"),
function(x, penalty, zones, data) {
# assert valid arguments
assert(
is_conservation_problem(x),
assertthat::is.number(penalty),
all_finite(penalty),
is.data.frame(data)
)
# add penalties to problem
add_neighbor_penalties(
x, penalty, zones,
marxan_connectivity_data_to_matrix(x, data, symmetric = TRUE)
)
}
)
#' @name add_neighbor_penalties
#' @usage \S4method{add_neighbor_penalties}{ConservationProblem,ANY,ANY,ANY}(x, penalty, zones, data)
#' @rdname add_neighbor_penalties
methods::setMethod("add_neighbor_penalties",
methods::signature("ConservationProblem", "ANY", "ANY", "ANY"),
function(x, penalty, zones, data) {
# assert valid arguments
assert(
is_conservation_problem(x),
assertthat::is.number(penalty),
all_finite(penalty),
is_matrix_ish(zones),
number_of_zones(x) == ncol(zones),
is_inherits(data, c("NULL", "Matrix"))
)
if (!is.null(data)) {
# check argument to data if not NULL
assert(
ncol(data) == nrow(data),
number_of_total_units(x) == ncol(data),
all_binary(data)
)
# check for symmetry
assert(
Matrix::isSymmetric(data),
msg = paste0(
"{.arg data} must have symmetric values."
)
)
} else {
# check that planning unit data is spatially referenced
assert(
is_pu_spatially_explicit(x),
msg = c(
"!" = paste(
"{.arg data} must be manually specified (e.g., as a {.cls Matrix})."
),
"i" = paste(
"This is because {.arg x} has planning unit data that are not",
"spatially explicit",
"(e.g., {.cls sf}, or {.cls SpatRaster} objects)."
)
)
)
}
# add penalties
internal_add_neighbor_penalties(x, penalty, as.matrix(zones), data)
}
)
#' @name add_neighbor_penalties
#' @usage \S4method{add_neighbor_penalties}{ConservationProblem,ANY,ANY,array}(x, penalty, zones, data)
#' @rdname add_neighbor_penalties
methods::setMethod("add_neighbor_penalties",
methods::signature("ConservationProblem", "ANY", "ANY", "array"),
function(x, penalty, zones, data) {
# assert valid arguments
assert(
is_conservation_problem(x),
assertthat::is.number(penalty),
all_finite(penalty),
is.null(zones),
is.array(data),
length(dim(data)) == 4,
dim(data)[1] == number_of_total_units(x),
dim(data)[2] == number_of_total_units(x),
dim(data)[3] == number_of_zones(x),
dim(data)[4] == number_of_zones(x),
all_finite(data)
)
# add penalties
internal_add_neighbor_penalties(x, penalty, zones, data)
}
)
internal_add_neighbor_penalties <- function(x, penalty, zones, data) {
# assert valid arguments
assert(
is_conservation_problem(x),
assertthat::is.number(penalty),
all_finite(penalty),
.internal = TRUE
)
# convert zones to matrix
if (!is.null(zones)) {
zones <- as.matrix(zones)
assert(
is_numeric_values(zones),
all_finite(zones),
isSymmetric(zones),
nrow(zones) == ncol(zones),
ncol(zones) == number_of_zones(x),
min(zones) >= -1,
max(zones) <= 1,
call = fn_caller_env()
)
colnames(zones) <- x$zone_names()
rownames(zones) <- colnames(zones)
}
# create new penalty object
x$add_penalty(
R6::R6Class(
"NeighborPenalty",
inherit = Penalty,
public = list(
name = "neighbor penalties",
data = list(penalty = penalty, zones = zones, data = data),
calculate = function(x) {
assert(is_conservation_problem(x))
# if needed, generate adjacency matrix if null
if (
is.null(self$get_data("data")) &&
is.Waiver(x$get_data("adjacency"))
) {
x$set_data("adjacency", adjacency_matrix(x$data$cost))
}
# return success
invisible(TRUE)
},
apply = function(x, y) {
# assert valid arguments
assert(
inherits(x, "OptimizationProblem"),
inherits(y, "ConservationProblem"),
.internal = TRUE
)
# extract data
d <- self$get_data("data")
if (is.null(d)) {
d <- y$get_data("adjacency")
}
indices <- y$planning_unit_indices()
# process data
m <- list()
if (inherits(d, "Matrix")) {
## if data is a Matrix...
d <- d[indices, indices, drop = FALSE]
z <- self$get_data("zones")
for (z1 in seq_len(ncol(z))) {
m[[z1]] <- list()
for (z2 in seq_len(nrow(z))) {
m[[z1]][[z2]] <- d * z[z1, z2]
}
}
} else if (inherits(d, "array")) {
## if data is an array...
for (z1 in seq_len(dim(d)[3])) {
m[[z1]] <- list()
for (z2 in seq_len(dim(d)[4])) {
m[[z1]][[z2]] <- as_Matrix(
d[indices, indices, z1, z2],
"dgCMatrix"
)
}
}
} else {
## throw error if not recognized
# nocov start
cli::cli_abort(
"Failed calculations for {.fn add_neighbor_penalties}.",
.internal = TRUE
)
# nocov end
}
# coerce to symmetric connectivity data
m <- lapply(m, function(x) {
lapply(x, function(y) as_Matrix(Matrix::tril(y), "dgCMatrix"))
})
# apply penalties
rcpp_apply_connectivity_penalties(x$ptr, self$get_data("penalty"), m)
invisible(TRUE)
}
)
)$new()
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.