R/Hist.R

Defines functions tail.Hist head.Hist str.Hist is.na.Hist subset.Hist

Documented in head.Hist is.na.Hist str.Hist subset.Hist tail.Hist

#' Create an event history object
#' 
#' Functionality for managing censored event history response data. The
#' function can be used as the left hand side of a formula: \code{Hist} serves
#' \code{\link{prodlim}} in a similar way as \code{\link[survival]{Surv}} from the
#' survival package serves `survfit'. \code{Hist} provides the suitable
#' extensions for dealing with right censored and interval censored data from
#' competing risks and other multi state models. Objects generated with
#' \code{Hist} have a print and a plot method.
#' 
#' 
#' *Specification of the event times*
#' 
#' If \code{time} is a numeric vector then the values are interpreted as right
#' censored event times, ie as the minimum of the event times and the censoring
#' times.
#' 
#' If \code{time} is a list with two elements or data frame with two numeric
#' columns The first element (column) is used as the left endpoints of interval
#' censored observations and the second as the corresponding right endpoints.
#' When the two endpoints are equal, then this observation is treated as an
#' exact uncensored observation of the event time.  If the value of the right
#' interval endpoint is either \code{NA} or \code{Inf}, then this observation
#' is treated as a right censored observation. Right censored observations can
#' also be specified by setting the value of \code{event} to \code{cens.code}.
#' This latter specification of right censored event times overwrites the
#' former: if \code{event} equals \code{cens.code} the observation is treated
#' as right censored no matter what the value of the right interval endpoint
#' is.
#' 
#' *Specification of the events*
#' 
#' If \code{event} is a numeric, character or logical vector then the order of
#' the attribute "state" given to the \code{value} of \code{Hist} is determined
#' by the order in which the values appear.  If it is a factor then the order
#' from the levels of the factor is used instead.
#' 
#' **Normal form of a multi state model**
#' 
#' If \code{event} is a list or a data.frame with exactly two elements, then
#' these describe the transitions in a multi state model that occurred at the
#' corresponding \code{time} as follows: The values of the first element are
#' interpreted as the \code{from} states of the transition and values of the
#' second as the corresponding \code{to} states.
#' 
#' **Longitudinal form of a multi state model**
#' 
#' If \code{id} is given then \code{event} must be a vector. In this case two
#' subsequent values of \code{event} belonging to the same value of \code{id}
#' are treated as the \code{from} and \code{to} states of the transitions.
#' 
#' @param time for right censored data a numeric vector of event times -- for
#' interval censored data a list or a data.frame providing two numeric vectors
#' the left and right endpoints of the intervals.  See \code{Details}.
#' @param event A vector or a factor that specifies the events that occurred at
#' the corresponding value of \code{time}. Numeric, character and logical
#' values are recognized.  It can also be a list or a data.frame for the
#' longitudinal form of storing the data of a multi state model -- see
#' \code{Details}.
#' @param entry Vector of delayed entry times (left-truncation) or list of two
#' times when the entry time is interval censored.
#' @param id Identifies the subjects to which multiple events belong for the
#' longitudinal form of storing the data of a multi state model -- see
#' \code{Details}.
#' @param cens.code A character or numeric vector to identify the right
#' censored observations in the values of \code{event}.  Defaults to "0" which
#' is equivalent to 0.
#' @param addInitialState If TRUE, an initial state is added to all ids for the
#' longitudinal input form of a multi-state model.
#' @return An object of class \code{Hist} for which there are print and plot
#' methods.  The object's internal is a matrix with some of the following
#' columns: \item{time}{ the right censored times} \item{L}{the left endpoints
#' of internal censored event times} \item{R}{the right endpoints of internal
#' censored event times} \item{status}{\code{0} for right censored, \code{1}
#' for exact, and \code{2} for interval censored event times.} \item{event}{an
#' integer valued numeric vector that codes the events.} \item{from}{an integer
#' valued numeric vector that codes the \code{from} states of a transition in a
#' multi state model.} \item{to}{an integer valued numeric vector that codes
#' the \code{to} states of a transition in a multi state model.}
#' 
#' Further information is stored in \code{\link{attributes}}.  The key to the
#' official names given to the events and the from and to states is stored in
#' an attribute "states".
#' @author Thomas A. Gerds \email{tag@@biostat.ku.dk}, Arthur Allignol
#' \email{arthur.allignol@@fdm.uni-freiburg.de}
#' @seealso \code{\link{plot.Hist}}, \code{\link{summary.Hist}},
#' \code{\link{prodlim}}
#' @keywords survival
#' @examples
#' 
#' 
#' ## Right censored responses of a two state model
#' ## ---------------------------------------------
#' 
#' Hist(time=1:10,event=c(0,1,0,0,0,1,0,1,0,0))
#' 
#' ## change the code for events and censored observations
#' 
#' Hist(time=1:10,event=c(99,"event",99,99,99,"event",99,"event",99,99),cens.code=99)
#' 
#' TwoStateFrame <- SimSurv(10)
#' SurvHist <- with(TwoStateFrame,Hist(time,status))
#' summary(SurvHist)
#' plot(SurvHist)
#' 
#' ## Right censored data from a competing risk model
#' ## --------------------------------------------------
#' 
#' CompRiskFrame <- data.frame(time=1:10,event=c(1,2,0,3,0,1,2,1,2,1))
#' CRHist <- with(CompRiskFrame,Hist(time,event))
#' summary(CRHist)
#' plot(CRHist)
#' 
#' ## Interval censored data from a survival model
#' icensFrame <- data.frame(L=c(1,1,3,4,6),R=c(2,NA,3,6,9),event=c(1,1,1,2,2))
#' with(icensFrame,Hist(time=list(L,R)))
#' 
#' ## Interval censored data from a competing risk model
#' with(icensFrame,Hist(time=list(L,R),event))
#' 
#' ## Multi state model
#' MultiStateFrame <- data.frame(time=1:10,
#' 			      from=c(1,1,3,1,2,4,1,1,2,1),
#' 			      to=c(2,3,1,2,4,2,3,2,4,4))
#' with(MultiStateFrame,Hist(time,event=list(from,to)))
#' 
#' ##  MultiState with right censored observations
#' 
#' MultiStateFrame1 <- data.frame(time=1:10,
#' 			      from=c(1,1,3,2,1,4,1,1,3,1),
#' 			      to=c(2,3,1,0,2,2,3,2,0,4))
#' with(MultiStateFrame1,Hist(time,event=list(from,to)))
#' 
#' ## Using the longitudinal input method 
#' MultiStateFrame2 <- data.frame(time=c(0,1,2,3,4,0,1,2,0,1),
#' 			      event=c(1,2,3,0,1,2,4,2,1,2),
#' 			      id=c(1,1,1,1,2,2,2,2,3,3))
#'  with(MultiStateFrame2,Hist(time,event=event,id=id))
#'
#' @export
"Hist" <- function(time,
                   event,
                   entry=NULL,
                   id=NULL,
                   cens.code="0",
                   addInitialState=FALSE) {

    ## package Cprob provides a vector, 
    ## to avoid problems we pick the first element 
    cens.code <- as.character(cens.code[[1]])
    
                                        # {{{ resolving the `time' argument
    if (is.matrix(time)) time <- data.frame(time)
    if (inherits(time,"list")){
        if (length(time) !=2 || length(time[[1]])!=length(time[[2]]))
            stop("Argument time has a wrong format")
        time <- data.frame(time)
    }
    if (is.data.frame(time)){
        cens.type <- "intervalCensored"
        L <- time[[1]]
        R <- time[[2]]
        N <- length(L)
        stopifnot(is.numeric(L))
        stopifnot(is.numeric(R))
        wrong <- L>R
        wrong[is.na(R)] <- FALSE
        stopifnot(all(wrong==FALSE))
        rm(wrong)
        status <- rep(2,N)
        status[L==R] <- 1
        status[is.infinite(R) | is.na(R) | (L!=R & as.character(R)==cens.code)] <- 0
        ## the last part of the condition achieves to things:
        ##     1. for multi-state models allow transitions to a censored state
        ##     2. to ignore this, if an event occured exactly at time 0 and 0 is the cens.code
        R[status==0] <- Inf
    }
    else{
        stopifnot(is.numeric(time))
        cens.type <- "rightCensored"
        N <- length(time)
        status <- rep(1,N) ## temporary dummy
    }
                                        # }}}
                                        # {{{ resolving the `entry' argument

  if (is.null(entry))
      entry.type <- ""
  else{
      if (is.matrix(entry)) entry <- data.frame(entry)
      if (inherits(entry,"list")){
          if (length(entry) !=2 || length(entry[[1]])!=length(entry[[2]]))
              stop("Argument entry has a wrong format")
          entry <- data.frame(entry)
      }
      if (is.data.frame(entry)){
          entry.type <-"intervalCensored"
          U <- entry[[1]]
          V <- entry[[2]]
          stopifnot(is.numeric(U))
          stopifnot(is.numeric(V))
          stopifnot(all(!is.na(U))|all(!is.na(V)))
      }
      else{
          stopifnot(is.numeric(entry))
          if (is.null(id))
              entry.type <- "leftTruncated"
          else
              entry.type <- "exact"
      }}
  ## check if entry < exit
  if (cens.type=="intervalCensored"){
      if (entry.type=="intervalCensored"){
          stopifnot(all(V<=L))
      } else{
          stopifnot(is.null(entry) || all(entry<=L))
      }
  } else{
      if (entry.type=="intervalCensored"){
          stopifnot(all(V<=time))
      } else{
          stopifnot(is.null(entry) || all(entry<=time))
      }
  }

  # }}}
  # {{{ resolving the argument `event' 

  if (missing(event)){
      model <- "onejump"
      event <-  rep(1,N)
      warning("Argument event is missing:\nassume observations of a survival model\nand only one event per subject")
  }
  else{
      if (is.matrix(event)) event <- data.frame(event)
      ## event can be an ordered factor
      ## in which case class has two elements
      ## to avoid warnings we need [[1]]
      if ((is.vector(event) & !(inherits(event,"list")))|| is.factor(event))
          stopifnot(length(event)==N)
      if (inherits(event,"list")){
          if (length(event) !=2 || length(event[[1]])!=length(event[[2]]))
              stop("Argument event has a wrong format")
          event <- data.frame(event)
      }
      if (!is.data.frame(event)){
          if (is.null(id)){
              model <- "onejump"
              if (is.logical(event)) event <- as.numeric(event)
              status[is.na(event) | is.infinite(event) | as.character(event)==cens.code] <- 0
          }
          else{
              ## inFormat <- "longitudinal"
              stopifnot(is.numeric(id) || is.factor(id))
              model <- "multi.states"
              if (cens.type=="intervalCensored"){
                  stop("Dont know the order of transitions for interval censored observations.")
              }
              else{
                  if (addInitialState==TRUE){
                      time <- c(rep(0,length(unique(id))),time)
                      if (is.factor(event)){
                          event <- factor(c(rep("initial",length(unique(id))),as.character(event)),levels=c("initial",levels(event)))
                      }
                      else{
                          stopifnot(match("initial",unique(event),nomatch=0)==0)
                          event <- c(rep("initial",length(unique(id))),event)
                      }
                      id <- c(unique(id),id)
                      ## status <- c(rep(cens.code,length(unique(id))),status)
                  }
                  # 1. sort the observations by id and time
                  sorted <- order(id,time)
                  time <- time[sorted]
                  ## status <- status[sorted] consists only of 1's
                  id <- id[sorted]
                  event <- event[sorted]
                  # time <- time[duplicated(id)] ## remove the resp. first time
                  # status <- status[duplicated(id)]
                  if (length(unique(id))!=sum(time==0))
                      stop("There are ",length(unique(id))," different individuals (id's), but the state at time 0 is available for ",sum(time==0)," id's.")
                  initialState <- event[time==0]
                  last.id <- c(diff(id) != 0, 1)
                  first.id <- c(1, diff(id) != 0)
                  from <- factor(event[last.id!=1])
                  to <- factor(event[first.id!=1])
                  id <- id[time!=0]
                  time <- time[time!=0]
                  # 2. get back to the original order
                  ### cannot easily get back since
                  ### length(time) < sorted
                  ## time <- time[sorted]
                  ## id <- id[sorted]
                  ## event <- event[sorted]
                  status <- rep(1,length(to))
                  status[is.na(to) | is.infinite(to) | as.character(to)==cens.code] <- 0
              }
          }
      }
      else{
          ## inFormat <- "from2to"
          model <- "multi.states"
          from <- event[[1]]
          to <- event[[2]]
          status[is.na(to) | is.infinite(to) | as.character(to)==cens.code] <- 0
          if (length(unique(from))==1){
              model <- "onejump"
              event <- to
              if (is.logical(to)) to <- as.numeric(to)
              status[is.na(to) | is.infinite(to) | as.character(event)==cens.code] <- 0
          }
      }
  }
  ## if (all(status==0)) warning("All observations are censored")
  if (all(status==1)) cens.type <- "uncensored"
  
  if(model=="onejump"){

    # }}}
  # {{{  2-state and competing.risks models
    if (is.factor(event)){
      event <- factor(event) # drop unused levels
      states <- levels(event)
      ## states <- states[match(state.order,states)]
    }
    else{
      states <- sort(as.character(unique(event)))
    }
    states <- as.character(states[states!=cens.code])
  
  if (length(states)>1)
    model <- "competing.risks"
  else
      model <- "survival"
    
    if (cens.type=="intervalCensored"){
        if (model=="survival"){
            if (entry.type=="intervalCensored")
                history <- cbind(U=U,V=V,L=L,R=R,status=status)
            else
                history <- cbind(entry = entry,L=L,R=R,status=status)
        }
        else{
            if (entry.type=="intervalCensored")
                history <- cbind(U=U,
                                 V=V,
                                 L=L,
                                 R=R,
                                 status=status,
                                 event=as.integer(factor(event,levels=c(states,cens.code))))
            else
                history <- cbind(entry = entry,
                                 L=L,
                                 R=R,
                                 status=status,
                                 event=as.integer(factor(event,levels=c(states,cens.code))))
        }
    }
    else{
        if (model=="survival"){
            if (entry.type=="intervalCensored")
                history <- cbind(U=U,V=V,time=time,status=status)
            else
                history <- cbind(entry = entry,time=time,status=status)
        }
        else{
            if (entry.type=="intervalCensored")
                history <- cbind(U=U,
                                 V=V,
                                 time=time,
                                 status=status,
                                 event=as.integer(factor(event,levels=c(states,cens.code))))
            else{
                history <- cbind(entry = entry,
                                 time=time,
                                 status=status,
                                 event=as.integer(factor(event,levels=c(states,cens.code))))
            }
        }
    }
} else{
    # }}}
    # {{{  multi.state models

    if (any(as.character(from)==as.character(to))) stop("Data contain transitions from state x to state x")

    eventISfactor <- as.numeric(is.factor(from)) + as.numeric(is.factor(to))

    if (eventISfactor==1) stop("Components of event have different classes")
    
    if (eventISfactor==2)
      states <- unique(c(levels(from),levels(to)))
    else
      states <- as.character(unique(c(from,to)))
    states <- as.character(states[states!=cens.code])
    ## states <- states[match(state.order,states)]
    if (cens.code %in% levels(from)){
      stop(paste("The Cens.code",
                 cens.code,
                 " identifies censored data, but is found amoung the `from' state of some transitions"))
    } 
    if (cens.type=="intervalCensored"){
      if (entry.type=="intervalCensored")
          history <- cbind(U=U,
                           V=V,
                           L=L,
                           R=R,
                           status=status,
                           from=as.integer(factor(from,levels=c(states,cens.code))),
                           to=as.integer(factor(to,levels=c(states,cens.code))))
      else{
          history <- cbind(entry = entry,
                           L=L,
                           R=R,
                           status=status,
                           from=as.integer(factor(from,levels=c(states,cens.code))),
                           to=as.integer(factor(to,levels=c(states,cens.code))))
      }
    }
    else{
      if (entry.type=="intervalCensored")
          history <- cbind(U=U,
                           V=V,
                           time=time,
                           status=status,
                           from=as.integer(factor(from,levels=c(states,cens.code))),
                           to=as.integer(factor(to,levels=c(states,cens.code))))
      else{
          history <- cbind(entry = entry,
                           time=time,
                           status=status,
                           from=as.integer(factor(from,levels=c(states,cens.code))),
                           to=as.integer(factor(to,levels=c(states,cens.code))))
      }
    }
  }

  # }}}
  # {{{ add id

  if (!is.null(id)) history <- cbind(history,id)
  
  # }}}
  # {{{ class and attributes
  rownames(history) <- NULL
  class(history) <- c("Hist")
  attr(history,"states") <- states
  attr(history,"cens.type") <- cens.type
  attr(history,"cens.code") <- as.character(cens.code)
  attr(history,"model") <- model
  ## print(entry.type)
  attr(history,"entry.type") <- entry.type
  history
  # }}}
}


#' Subset an event history object
#'
#' This method makes sure that the attributes are
#' preserved
#' @export subset.Hist
#' @param x object obtained with \code{\link{Hist}}
#' @param subset passed on to next method
#' @param select passed on to next method
#' @param drop passed on to next method
#' @param ... passed on to the next method
subset.Hist <- function(x,subset,select,drop,...){
  if (missing(select)){
    xx <- x
    class(xx) <- "matrix"
    xx <- subset(xx,subset=subset,drop=drop)
    attr(xx,"class") <- attr(x,"class")
    attr(xx,"states") <- attr(x,"states")
    attr(xx,"model") <- attr(x,"model")
    attr(xx,"cens.type") <- attr(x,"cens.type")
    attr(xx,"cens.code") <- attr(x,"cens.code")
    attr(xx,"entry.type") <- attr(x,"entry.type")
    xx
  }
  else{
    class(x) <- "matrix"
    NextMethod("subset")
  }
}

#' Subset an event history object
#'
#' This method makes sure that the attributes are
#' preserved
#' @param x object obtained with \code{\link{Hist}}
#' @param i passed on to next method
#' @param j passed on to next method
#' @param drop passed on to next method
#' @export '[.Hist'
"[.Hist" <- function(x,i,j,drop=FALSE){
  if (missing(j)){
    xx <- x
    class(xx) <- "matrix"
    xx <- xx[i,,drop=drop]
    class(xx) <- "Hist"    
    attr(xx,"class") <- attr(x,"class")
    attr(xx,"states") <- attr(x,"states")
    attr(xx,"model") <- attr(x,"model")
    attr(xx,"cens.type") <- attr(x,"cens.type")
    attr(xx,"cens.code") <- attr(x,"cens.code")
    attr(xx,"entry.type") <- attr(x,"entry.type")
    xx
  }
  else{
    class(x) <- "matrix"
    ## x[i,j,drop=drop]
    NextMethod("[")
  }
}

#' Check for missing values in event history object
#'
#' The object has usually two or three columns and
#' this function checks each column separately
#' @export is.na.Hist
#' @param x object obtained with \code{\link{Hist}} 
is.na.Hist <- function(x) {
  as.vector( (1* is.na(unclass(x)))%*% rep(1, ncol(x)) >0)
}

#' Check the structure of an event history object
#'
#' The object is evaluated as a matrix
#' @export str.Hist
#' @param x object obtained with \code{\link{Hist}} 
str.Hist <- function(x){
  class(x) <- "matrix"
  utils::str(x)
}

#' Check the head of an event history object
#'
#' The object is evaluated as a matrix
#' @export head.Hist
#' @param x object obtained with \code{\link{Hist}} 
head.Hist <- function(x){
  class(x) <- "matrix"
  utils::head(x)
}

#' Check the tail of an event history object
#'
#' The object is evaluated as a matrix
#' @export tail.Hist
#' @param x object obtained with \code{\link{Hist}} 
tail.Hist <- function(x){
  class(x) <- "matrix"
  utils::tail(x)
}

Try the prodlim package in your browser

Any scripts or data that you put into this service are public.

prodlim documentation built on June 24, 2024, 5:08 p.m.