covpCAS: Coverage Probability of Continuity corrected ArcSine method

Description Usage Arguments Details Value References See Also Examples

View source: R/221.CoverageProb_CC_All.R

Description

Coverage Probability of Continuity corrected ArcSine method

Usage

1
covpCAS(n, alp, c, a, b, t1, t2)

Arguments

n

- Number of trials

alp

- Alpha value (significance level required)

c

- Continiuty correction

a

- Beta parameters for hypo "p"

b

- Beta parameters for hypo "p"

t1

- Lower tolerance limit to check the spread of coverage Probability

t2

- Upper tolerance limit to check the spread of coverage Probability

Details

Evaluation of continuity corrected Wald-type interval for the arcsine transformation of the parameter p using coverage probability, root mean square statistic, and the proportion of proportion lies within the desired level of coverage

Value

A dataframe with

mcpCA

Continuity corrected ArcSine Coverage Probability

micpCA

Continuity corrected ArcSine minimum coverage probability

RMSE_N

Root Mean Square Error from nominal size

RMSE_M

Root Mean Square Error for Coverage Probability

RMSE_MI

Root Mean Square Error for minimum coverage probability

tol

Required tolerance for coverage probability

References

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

See Also

Other Coverage probability for continuity corrected methods: PlotcovpCAS, PlotcovpCAll, PlotcovpCLT, PlotcovpCSC, PlotcovpCTW, PlotcovpCWD, covpCAll, covpCLT, covpCSC, covpCTW, covpCWD

Examples

1
2
n= 10; alp=0.05; c=1/(2*n); a=1;b=1; t1=0.93;t2=0.97
covpCAS(n,alp,c,a,b,t1,t2)

proportion documentation built on May 1, 2019, 7:54 p.m.