R/pcm-04-extractFAScales.R

Defines functions extractFAScales

Documented in extractFAScales

#' Scales-Based Descriptors derived by Factor Analysis
#'
#' This function calculates scales-based descriptors
#' derived by Factor Analysis (FA).
#' Users can provide customized amino acid property matrices.
#'
#' @param x A character vector, as the input protein sequence.
#' @param propmat A matrix containing the properties for the amino acids.
#' Each row represent one amino acid type, each column represents one property.
#' Note that the one-letter row names must be provided for we need them to seek
#' the properties for each AA type.
#' @param factors Integer. The number of factors to be fitted.
#' Must be no greater than the number of AA properties provided.
#' @param scores Type of scores to produce. The default is \code{"regression"},
#' which gives Thompson's scores, \code{"Bartlett"} given Bartlett's weighted
#' least-squares scores.
#' @param lag The lag parameter. Must be less than the amino acids number
#' in the protein sequence.
#' @param scale Logical. Should we auto-scale the property matrix
#' (\code{propmat}) before doing Factor Analysis? Default is \code{TRUE}.
#' @param silent Logical. Whether we print the SS loadings,
#' proportion of variance and the cumulative proportion of
#' the selected factors or not. Default is \code{TRUE}.
#'
#' @return A length \code{lag * p^2} named vector,
#' \code{p} is the number of scales (factors) selected.
#'
#' @keywords extract Factor PCM
#'
#' @aliases extractFAScales
#'
#' @author Nan Xiao <\url{https://nanx.me}>
#'
#' @export extractFAScales
#'
#' @references
#' Atchley, W. R., Zhao, J., Fernandes, A. D., & Druke, T. (2005).
#' Solving the protein sequence metric problem.
#' Proceedings of the National Academy of Sciences of the United States of America,
#' 102(18), 6395-6400.
#'
#' @examples
#' x = readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
#' data(AATopo)
#' tprops = AATopo[, c(37:41, 43:47)]  # select a set of topological descriptors
#' fa = extractFAScales(
#'   x, propmat = tprops, factors = 5, lag = 7, silent = FALSE)

extractFAScales = function(
  x, propmat, factors, scores = 'regression',
  lag, scale = TRUE, silent = TRUE) {

  if (protcheck(x) == FALSE)
    stop('x has unrecognized amino acid type')

  factors = min(factors, ncol(propmat), nrow(propmat))

  if (scale) propmat = scale(propmat)

  prop.fa = factanal(propmat, factors = factors, scores = scores)
  prop.scores = prop.fa$scores

  accmat = matrix(0, factors, nchar(x))
  x.split = strsplit(x, '')[[1]]

  for (i in 1:nchar(x)) accmat[, i] = prop.scores[x.split[i], 1:factors]

  res = acc(accmat, lag)

  if (!silent) {
    cat('Summary of the factor analysis result:\n')
    print(prop.fa)
  }

  return(res)

}

Try the protr package in your browser

Any scripts or data that you put into this service are public.

protr documentation built on July 15, 2018, 9:05 a.m.