R/pcm-05-extractMDSScales.R

Defines functions extractMDSScales

Documented in extractMDSScales

#' Scales-Based Descriptors derived by Multidimensional Scaling
#'
#' This function calculates scales-based descriptors
#' derived by Multidimensional Scaling (MDS).
#' Users can provide customized amino acid property matrices.
#'
#' @param x A character vector, as the input protein sequence.
#' @param propmat A matrix containing the properties for the amino acids.
#' Each row represent one amino acid type, each column represents one property.
#' Note that the one-letter row names must be provided for we need them to seek
#' the properties for each AA type.
#' @param k Integer. The maximum dimension of the space which the data
#' are to be represented in. Must be no greater than the number of AA
#' properties provided.
#' @param lag The lag parameter. Must be less than the amino acids.
#' @param scale Logical. Should we auto-scale the property matrix
#' (\code{propmat}) before doing MDS? Default is \code{TRUE}.
#' @param silent Logical. Whether to print the \code{k} eigenvalues
#' computed during the scaling process or not. Default is \code{TRUE}.
#'
#' @return A length \code{lag * p^2} named vector,
#' \code{p} is the number of scales (dimensionality) selected.
#'
#' @author Nan Xiao <\url{https://nanx.me}>
#'
#' @seealso See \code{\link{extractScales}} for scales-based
#' descriptors derived by Principal Components Analysis.
#'
#' @importFrom stats dist cmdscale
#'
#' @export extractMDSScales
#'
#' @references
#' Venkatarajan, M. S., & Braun, W. (2001).
#' New quantitative descriptors of amino acids based on multidimensional scaling
#' of a large number of physical-chemical properties.
#' Molecular modeling annual, 7(12), 445--453.
#'
#' @examples
#' x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
#' data(AATopo)
#' tprops <- AATopo[, c(37:41, 43:47)] # select a set of topological descriptors
#' mds <- extractMDSScales(x, propmat = tprops, k = 5, lag = 7, silent = FALSE)
extractMDSScales <- function(
    x, propmat, k, lag, scale = TRUE, silent = TRUE) {
  if (protcheck(x) == FALSE) {
    stop("x has unrecognized amino acid type")
  }

  k <- min(k, ncol(propmat) - 1, nrow(propmat) - 1)

  if (scale) propmat <- scale(propmat)

  d <- dist(propmat) # euclidean distances between the rows
  mds <- cmdscale(d, k = k, eig = TRUE)

  accmat <- matrix(0, k, nchar(x))
  x.split <- strsplit(x, "")[[1]]

  for (i in 1:nchar(x)) accmat[, i] <- mds$points[x.split[i], 1:k]

  res <- acc(accmat, lag)

  if (!silent) {
    cat("Eigenvalues computed during the scaling process:", "\n")
    print(mds$eig)
  }

  res
}

Try the protr package in your browser

Any scripts or data that you put into this service are public.

protr documentation built on Sept. 12, 2024, 6:44 a.m.