Nothing
#' Set Class
#'
#' Utility function to set an objects class.
#'
#' @param x object to set the class of.
#' @param cls the class to be set.
#' @export
as_class <- function(x, cls) {
class(x) <- cls
return(x)
}
#' Add a class
#'
#' Utility function to add a class to an object. Adds the new class
#' after any existing classes.
#'
#' @param x object to add a class to.
#' @param cls the class to be added.
#' @export
add_class <- function(x, cls) {
class(x) <- c(class(x), cls)
return(x)
}
#' Does object have a class ?
#'
#' Utility function to see if an object has a particular class.
#' Useful when we don't know how many other classes the object may
#' have.
#'
#' @return
#' `TRUE` if the object has the class.
#' `FALSE` if the object does not have the class.
#'
#' @param x the object we want to check the class of.
#' @param cls the class we want to know if it has or not.
#' @export
has_class <- function(x, cls) {
cls %in% class(x)
}
#' Creates a simple formula object from a string
#'
#' Converts a string list of variables into a formula object
#'
#' @param outcome character (length 1 vector). Name of the outcome variable
#' @param covars character (vector). Name of covariates
#' @return
#' A formula
as_simple_formula <- function(outcome, covars) {
frm <- stats::as.formula(
paste0(
outcome,
"~ 1 + ",
paste0(covars, collapse = " + ")
)
)
environment(frm) <- globalenv()
return(frm)
}
#' Expand `data.frame` into a design matrix
#'
#' Expands out a `data.frame` using a formula to create a design matrix.
#' Key details are that it will always place the outcome variable into
#' the first column of the return object.
#'
#' The outcome column may contain NA's but none of the other variables
#' listed in the formula should contain missing values
#'
#' @param dat a data.frame
#' @param frm a formula
as_model_df <- function(dat, frm) {
outcome <- as.character(attr(stats::terms(frm), "variables")[[2]])
is_missing <- is.na(dat[[outcome]])
dat[[outcome]][is_missing] <- 999
design_mat <- stats::model.matrix(frm, dat)
dat[[outcome]][is_missing] <- NA
assert_that(
nrow(design_mat) == nrow(dat),
msg = "Model matrix has less rows than input dataset. You may have missing values."
)
full_mat <- cbind(dat[[outcome]], design_mat)
colnames(full_mat) <- c("outcome", paste0("V", seq_len(ncol(full_mat) - 1)))
design <- as.data.frame(full_mat)
class(design) <- class(dat)
return(design)
}
#' Convert character variables to factor
#'
#' Provided a vector of variable names this function converts any
#' character variables into factors. Has no affect on numeric or existing
#' factor variables
#' @param data A data.frame
#' @param vars a character vector of variables in `data`
char2fct <- function(data, vars = NULL) {
if (is.null(vars)) {
vars <- colnames(data)
}
for (var in vars) {
assert_that(
var %in% colnames(data),
msg = sprintf("Variable %s is not in data", var)
)
if (is.character(data[[var]])) {
data[[var]] <- factor(data[[var]])
}
}
return(data)
}
#' if else
#'
#' A wrapper around `if() else()` to prevent unexpected
#' interactions between `ifelse()` and factor variables
#'
#' @details
#' By default `ifelse()` will convert factor variables to their
#' numeric values which is often undesirable. This connivance
#' function avoids that problem
#'
#' @param x True / False
#' @param a value to return if True
#' @param b value to return if False
ife <- function(x, a, b) {
if (x) {
return(a)
} else {
return(b)
}
}
#' Sample random values from the multivariate normal distribution
#'
#' @param mu mean vector
#' @param sigma covariance matrix
#'
#' Samples multivariate normal variables by multiplying
#' univariate random normal variables by the cholesky
#' decomposition of the covariance matrix.
#'
#' If mu is length 1 then just uses rnorm instead.
sample_mvnorm <- function(mu, sigma) {
if (length(sigma) == 1 && length(mu) == 1) {
return(rnorm(1, mu, sqrt(sigma)))
}
assert_that(
is.matrix(sigma),
nrow(sigma) == ncol(sigma),
nrow(sigma) == length(mu),
msg = "`mu` and `sigma` are not of compatible sizes"
)
x <- rnorm(nrow(sigma), mean = 0, sd = 1)
(x %*% chol(sigma)) + as.vector(mu)
}
#' Capture all Output
#'
#' This function silences all warnings, errors & messages and instead returns a list
#' containing the results (if it didn't error) + the warning and error messages as
#' character vectors.
#'
#' @param expr An expression to be executed
#'
#' @return
#' A list containing
#'
#' - **results** - The object returned by `expr` or `list()` if an error was thrown
#' - **warnings** - NULL or a character vector if warnings were thrown
#' - **errors** - NULL or a string if an error was thrown
#' - **messages** - NULL or a character vector if messages were produced
#'
#' @examples
#' \dontrun{
#' record({
#' x <- 1
#' y <- 2
#' warning("something went wrong")
#' message("O nearly done")
#' x + y
#' })
#' }
record <- function(expr) {
env <- new.env()
result <- withCallingHandlers(
withRestarts(
expr,
muffleStop = function() list()
),
message = function(m) {
env$message <- c(env$message, m$message)
invokeRestart("muffleMessage")
},
warning = function(w) {
env$warning <- c(env$warning, w$message)
invokeRestart("muffleWarning")
},
error = function(e) {
env$error <- c(env$error, e$message)
invokeRestart("muffleStop")
}
)
list(
results = result,
warnings = env$warning,
errors = env$error,
messages = env$message
)
}
#' Is value absent
#'
#' Returns true if a value is either NULL, NA or "".
#' In the case of a vector all values must be NULL/NA/""
#' for x to be regarded as absent.
#'
#' @param x a value to check if it is absent or not
#' @param na do NAs count as absent
#' @param blank do blanks i.e. "" count as absent
is_absent <- function(x, na = TRUE, blank = TRUE) {
if (is.null(x)) {
return(TRUE)
}
if (na) {
if (all(is.na(x))) {
return(TRUE)
}
}
if (blank && is.character(x)) {
if (all(x == "")) {
return(TRUE)
}
}
return(FALSE)
}
#' Extract Variables from string vector
#'
#' Takes a string including potentially model terms like `*` and `:` and
#' extracts out the individual variables
#'
#' i.e. `c("v1", "v2", "v2*v3", "v1:v2")` becomes `c("v1", "v2", "v3")`
#'
#' @param x string of variable names potentially including interaction terms
extract_covariates <- function(x) {
if (is.null(x)) {
return(x)
}
x_split <- strsplit(x, ":|\\*")
x_vec <- unlist(x_split, use.names = FALSE)
x_nws <- trimws(x_vec)
x_uni <- unique(x_nws)
return(x_uni)
}
#' Does a string contain a substring
#'
#' @param x character vector
#' @param subs a character vector of substrings to look for
#'
#' @description
#' Returns a vector of `TRUE`/`FALSE` for each element of x
#' if it contains any element in `subs`
#'
#' i.e.
#' ```
#' str_contains( c("ben", "tom", "harry"), c("e", "y"))
#' [1] TRUE FALSE TRUE
#' ```
str_contains <- function(x, subs) {
strings <- x
res_list <- lapply(subs, function(x) grepl(x, strings, fixed = TRUE))
res_matrix <- matrix(
unlist(res_list),
nrow = length(res_list),
byrow = TRUE
)
res <- unlist(
apply(res_matrix, MARGIN = 2, any, simplify = FALSE),
use.names = TRUE
)
assert_that(length(res) == length(strings))
return(res)
}
#' Sort `data.frame`
#'
#' Sorts a `data.frame` (ascending by default) based upon variables within the dataset
#' @param df data.frame
#' @param vars character vector of variables
#' @param decreasing logical whether sort order should be in descending or ascending (default) order.
#' Can be either a single logical value (in which case it is applied to
#' all variables) or a vector which is the same length as `vars`
#' @examples
#' \dontrun{
#' sort_by(iris, c("Sepal.Length", "Sepal.Width"), decreasing = c(TRUE, FALSE))
#' }
sort_by <- function(df, vars = NULL, decreasing = FALSE) {
if (is.null(vars)) {
return(df)
}
assert_that(
is.data.frame(df),
all(vars %in% names(df)),
is.logical(decreasing),
length(decreasing) == 1 | length(decreasing) == length(vars)
)
args <- as.list(df[, vars, drop = FALSE])
args$decreasing <- decreasing
ord <- do.call(order, args)
df2 <- df[ord, ]
assert_that(nrow(df) == nrow(df2), ncol(df) == ncol(df2))
return(df2)
}
#' Set key variables
#'
#' @description
#' This function is used to define the names of key variables within the `data.frame`'s
#' that are provided as input arguments to [draws()] and [ancova()].
#'
#' @param subjid The name of the "Subject ID" variable. A length 1 character vector.
#'
#' @param visit The name of the "Visit" variable. A length 1 character vector.
#'
#' @param outcome The name of the "Outcome" variable. A length 1 character vector.
#'
#' @param group The name of the "Group" variable. A length 1 character vector.
#'
#' @param covariates The name of any covariates to be used in the context of modeling.
#' See details.
#'
#' @param strata The name of the any stratification variable to be used in the context of bootstrap
#' sampling. See details.
#'
#' @param strategy The name of the "strategy" variable. A length 1 character vector.
#'
#' @details
#'
#' In both [draws()] and [ancova()] the `covariates` argument can be specified to indicate
#' which variables should be included in the imputation and analysis models respectively. If you wish
#' to include interaction terms these need to be manually specified i.e.
#' `covariates = c("group*visit", "age*sex")`. Please note that the use of the [I()] function to
#' inhibit the interpretation/conversion of objects is not supported.
#'
#' Currently `strata` is only used by [draws()] in combination with `method_condmean(type = "bootstrap")`
#' and `method_approxbayes()` in order to allow for the specification of stratified bootstrap sampling.
#' By default `strata` is set equal to the value of `group` as it is assumed most users will want to
#' preserve the group size between samples. See [draws()] for more details.
#'
#' Likewise, currently the `strategy` argument is only used by [draws()] to specify the name of the
#' strategy variable within the `data_ice` data.frame. See [draws()] for more details.
#'
#' @seealso [draws()]
#' @seealso [ancova()]
#'
#' @examples
#' \dontrun{
#'
#' # Using CDISC variable names as an example
#' set_vars(
#' subjid = "usubjid",
#' visit = "avisit",
#' outcome = "aval",
#' group = "arm",
#' covariates = c("bwt", "bht", "arm * avisit"),
#' strategy = "strat"
#' )
#'
#' }
#'
#' @export
set_vars <- function(
subjid = "subjid",
visit = "visit",
outcome = "outcome",
group = "group",
covariates = character(0),
strata = group,
strategy = "strategy"
) {
x <- list(
subjid = subjid,
visit = visit,
outcome = outcome,
group = group,
covariates = covariates,
strata = strata,
strategy = strategy
)
class(x) <- c("ivars", "list")
validate(x)
return(x)
}
#' Validate inputs for `vars`
#'
#' Checks that the required variable names are defined within `vars` and
#' are of appropriate datatypes
#'
#' @param x named list indicating the names of key variables in the source dataset
#' @param ... not used
#' @export
validate.ivars <- function(x, ...) {
assert_that(
is_char_one(x$outcome),
msg = "`vars$outcome` should be a length 1 character"
)
assert_that(
is_char_one(x$group),
msg = "`vars$group` should be a length 1 character"
)
assert_that(
is_char_one(x$visit),
msg = "`vars$visit` should be a length 1 character"
)
assert_that(
is_char_one(x$subjid),
msg = "`vars$subjid` should be a length 1 character"
)
assert_that(
is_char_one(x$strategy),
msg = "`vars$strategy` should be a length 1 character"
)
covars <- extract_covariates(x$covariates)
assert_that(
is.character(covars) | is.null(covars),
msg = "`vars$covars` should be a character vector or NULL"
)
assert_that(
is.character(x$strata) | is.null(x$strata),
msg = "`vars$strata` should be a character vector or NULL"
)
return(invisible(TRUE))
}
#' Is single character
#'
#' returns true if x is a length 1 character vector
#'
#' @param x a character vector
is_char_one <- function(x) {
is.character(x) & (length(x) == 1)
}
#' Is character or factor
#'
#' returns true if x is character or factor vector
#'
#' @param x a character or factor vector
is_char_fact <- function(x) {
is.character(x) | is.factor(x)
}
#' Is character, factor or numeric
#'
#' returns true if x is a character, numeric or factor vector
#'
#' @param x a character, numeric or factor vector
is_num_char_fact <- function(x) {
is.numeric(x) | is.character(x) | is.factor(x)
}
#' Format method descriptions
#'
#' This function formats method descriptions by combining method names and their descriptions.
#'
#' @param method A named list of methods and their descriptions.
#' @return A character vector of formatted method descriptions.
#' @details If any non-atomic elements are present in the method list, they are converted to
#' a string representation using `dput()`.
format_method_descriptions <- function(method) {
assertthat::assert_that(is.list(method))
is_atomic <- vapply(method, is.atomic, logical(1))
if (any(!is_atomic)) {
method[!is_atomic] <- lapply(
method[!is_atomic],
function(x) {
paste(
capture.output(dput(x)),
collapse = "\n "
)
}
)
}
vapply(
mapply(
function(x, y) sprintf(" %s: %s", y, x),
method,
names(method),
USE.NAMES = FALSE,
SIMPLIFY = FALSE
),
identity,
character(1)
)
}
#' Convert object to dataframe
#'
#' @param x a data.frame like object
#'
#' Utility function to convert a "data.frame-like" object to an actual `data.frame`
#' to avoid issues with inconsistency on methods (such as `[`() and dplyr's grouped dataframes)
as_dataframe <- function(x) {
x2 <- as.data.frame(x)
row.names(x2) <- NULL
return(x2)
}
#' Ensure `rstan` exists
#'
#' Checks to see if rstan exists and if not throws a helpful error message
#' @keywords internal
ensure_rstan <- function() {
if (!requireNamespace("rstan", quietly = TRUE)) {
stop(
"In order to use `method_bayes()` the `rstan` package must be installed.",
" This can be installed from CRAN by running:\n\n",
" install.packages('rstan')\n\n",
"Please note that for `rstan` to work you need to ensure you have a valid C++ toolchain;",
" for details please see:\n",
"https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started#configuring-c-toolchain\n\n"
)
}
}
#' Get session hash
#'
#' Gets a unique string based on the current R version and relevant packages.
#' @importFrom utils sessionInfo
#' @keywords internal
get_session_hash <- function() {
pkg_versions <- vapply(
sessionInfo(c("rbmi", "rstan", "Rcpp", "RcppEigen"))[["otherPkgs"]],
function(x) x[["Version"]],
character(1L)
)
version_string <- paste0(
R.version.string,
paste0(names(pkg_versions), pkg_versions, collapse = ":")
)
temp_file <- tempfile()
writeLines(version_string, temp_file)
hash <- tools::md5sum(temp_file)
unlist(temp_file)
return(hash)
}
#' Clear Model Cache
#'
#' Clears the compiled Stan model cache, keeping only the models that match the `keep` argument.
#'
#' @param keep A character string that specifies which models to keep in the cache.
#' @param cache_dir The directory where the compiled Stan models are cached. Defaults to the option `rbmi.cache_dir`.
#' @return See [unlink()] for details on the return value regarding the deletion of the old model files.
#'
#' @keywords internal
clear_model_cache <- function(keep, cache_dir = getOption("rbmi.cache_dir")) {
assert_that(assertthat::is.string(keep))
all_model_files <- list.files(
cache_dir,
pattern = "(rbmi_MMRM_).*(\\.stan|\\.rds)",
full.names = TRUE
)
should_keep <- grepl(pattern = keep, x = all_model_files, fixed = TRUE)
old_model_files <- all_model_files[!should_keep]
unlink(old_model_files)
}
#' List of Stan Blocks
#'
#' @description
#' A list with 1 element per standard Stan program blocks.
#' This object is mostly used internally as a reference for
#' what blocks are parsed from a covariance / prior Stan definition file.
STAN_BLOCKS <- list(
functions = "functions",
data = "data",
parameters = "parameters",
transformed_data = "transformed data",
transformed_parameters = "transformed parameters",
model = "model"
)
#' Conversion of Character Vector into Stan Code Block List
#'
#' @param x the single Stan code vector.
#' @param stan_blocks reference list of stan blocks.
#'
#' @return A list with the Stan code blocks.
#'
#' @author Craig Gower-Page (from `jmpost` R package)
#' @details
#' Function only works if code is in format
#' ```
#' data {
#' <code>
#' }
#' model {
#' <code>
#' }
#' ```
#' That is to say we do not support code in inline format i.e.
#' ```
#' data { <code> }
#' model { <code> }
#' ```
#'
#' @keywords internal
as_stan_fragments <- function(x, stan_blocks = STAN_BLOCKS) {
code <- unlist(stringr::str_split(x, "\n"))
errmsg <- paste(
"There were problems parsing the `%s` block.",
"Please report this as a bug."
)
# Check to see if any block openings exist that have code on the same line
# e.g. `data { int i;}`. This is unsupported so we throw an error
for (block in stan_blocks) {
regex <- sprintf("^\\s*%s\\s*\\{\\s*[^\\s-]+", block)
if (any(grepl(regex, code, perl = TRUE))) {
stop(sprintf(errmsg, block))
}
}
# We first look to identify the opening of a block e.g. `data {`
# We then regard all lines that follow as belonging to that block
# until we see another block being opened e.g. `model{`
results <- list()
target <- NULL
for (line in code) {
for (block in names(stan_blocks)) {
regex <- sprintf("^\\s*%s\\s*\\{\\s*$", stan_blocks[[block]])
if (stringr::str_detect(line, regex)) {
target <- block
line <- NULL
break
}
}
if (!is.null(target)) {
# This is memory inefficient but given the relatively small size of
# stan files its regarded as a acceptable simplification to ease the
# code burden
results[[target]] <- c(results[[target]], line)
}
}
# Loop over each block to remove trailing "}".
for (block in names(results)) {
block_length <- length(results[[block]])
# The following processing is only required if the block actually has content
if (block_length == 1 && results[[block]] == "") {
next
}
has_removed_char <- FALSE
# Walk backwards to find the closing `}` that corresponds to the `<block> {`
for (index in rev(seq_len(block_length))) {
line <- results[[block]][[index]]
# This code will exit the for loop as soon as it hits the closing `}`
# thus if we ever see a line that ends in text/numbers it means
# somethings gone wrong
if (stringr::str_detect(line, "[\\w\\d]+\\s*$")) {
stop(sprintf(errmsg, block))
}
if (stringr::str_detect(line, "\\}\\s*$")) {
new_line <- stringr::str_replace(line, "\\s*\\}\\s*$", "")
# If the line is now blank after removing the closing `}` then drop the line
keep_offset <- if (nchar(new_line) == 0) -1 else 0
# Only keep lines from the start of the block to the closing `}`
# this is to ensure we drop blank lines that were between the end
# of the block and the start of the next
keep_range <- seq_len(index + keep_offset)
results[[block]][[index]] <- new_line
results[[block]] <- results[[block]][keep_range]
has_removed_char <- TRUE
break
}
}
# If we haven't actually removed a closing `}` then something has gone wrong...
if (!has_removed_char) {
stop(sprintf(errmsg, block))
}
}
# Add any missing blocks back in
for (block in names(stan_blocks)) {
if (is.null(results[[block]])) {
results[[block]] <- ""
}
}
results
}
#' Find Stan File
#'
#' Finds a Stan file either in the local `inst/stan` directory or in the system package directory.
#'
#' @param file The name of the Stan file to find.
#' @param subdir Optional subdirectory within `inst/stan` where the file might be located.
#' @return The full path to the Stan file if found, otherwise an error is raised.
#'
#' @keywords internal
find_stan_file <- function(file, subdir = "") {
assert_that(assertthat::is.string(file))
assert_that(assertthat::is.string(subdir))
local_file <- file.path("inst", "stan", subdir, file)
system_file <- system.file(
file.path("stan", subdir, file),
package = "rbmi"
)
if (file.exists(local_file)) {
local_file
} else if (file.exists(system_file)) {
system_file
} else {
stop(paste0("Unable to find ", file, "; Please report this as a bug"))
}
}
#' Get Compiled Stan Object
#'
#' Gets a compiled Stan object that can be used with `rstan::sampling()`,
#' based on the choice of the covariance structure and the prior on the parameters.
#'
#' @param covariance A string indicating the covariance structure to be used.
#' @param prior_cov A string indicating the prior on the covariance parameters.
#' @return The compiled Stan model object.
#'
#' @keywords internal
get_stan_model <- function(covariance, prior_cov) {
# Compiling Stan models updates the current seed state. This can lead to
# non-reproducibility as compiling is conditional on wether there is a cached
# model available or not. Thus we save the current seed state and restore it
# at the end of this function so that it is in the same state regardless of
# whether the model was compiled or not.
# See https://github.com/insightsengineering/rbmi/issues/469
# Note that .Random.seed is only set if the seed has been set or if a random number
# has been generated.
current_seed_state <- globalenv()$.Random.seed
on.exit({
if (
is.null(current_seed_state) &&
exists(".Random.seed", envir = globalenv())
) {
rm(".Random.seed", envir = globalenv(), inherits = FALSE)
} else {
assign(
".Random.seed",
value = current_seed_state,
envir = globalenv(),
inherits = FALSE
)
}
})
ensure_rstan()
# Find the correct MMRM and covariance prior model Stan files.
file_loc_mmrm <- find_stan_file("MMRM.stan")
cov_prior_file <- paste0(covariance, "_", prior_cov, ".stan")
file_loc_cov_prior <- find_stan_file(
cov_prior_file,
subdir = "covariance_priors"
)
# Replace constants in the covariance prior file and parse it
# into a list of Stan code blocks.
cov_prior_template <- jinjar::parse_template(
fs::path(file_loc_cov_prior)
)
cov_prior_string <- jinjar::render(
.x = cov_prior_template,
machine_double_eps = .Machine$double.eps
)
cov_prior_blocks <- as_stan_fragments(cov_prior_string)
cov_prior_blocks <- lapply(cov_prior_blocks, paste, collapse = "\n")
# Decide file location for the final Stan model file.
cache_dir <- getOption("rbmi.cache_dir")
dir.create(cache_dir, showWarnings = FALSE, recursive = TRUE)
session_hash <- get_session_hash()
model_name <- paste0("rbmi_MMRM_", covariance, "_", prior_cov)
file_name <- paste0(model_name, "_", session_hash, ".stan")
model_file <- file.path(cache_dir, file_name)
# If it does not exist yet, create the model file from the template
# and save it to the cache directory.
if (!file.exists(model_file)) {
model_template <- jinjar::parse_template(
fs::path(file_loc_mmrm),
.config = jinjar::jinjar_config(
trim_blocks = TRUE,
lstrip_blocks = TRUE
)
)
model_data <- c(
cov_prior_blocks,
machine_double_eps = .Machine$double.eps
)
model_string <- do.call(
jinjar::render,
c(
list(.x = model_template),
model_data
)
)
clear_model_cache(keep = session_hash)
writeLines(model_string, model_file)
}
rstan::stan_model(
file = model_file,
auto_write = getOption("rbmi.enable_cache"),
model_name = model_name
)
}
#' rbmi settings
#'
#' @description
#' Define settings that modify the behaviour of the `rbmi` package
#'
#' Each of the following are the name of options that can be set via:
#' ```
#' options(<option_name> = <value>)
#' ```
#'
#' ## `rbmi.cache_dir`
#'
#' Default = `tools::R_user_dir("rbmi", which = "cache")`
#'
#' Directory to store compiled Stan models in to avoid having to re-compile.
#' If the environment variable `RBMI_CACHE_DIR` has been set this will be used
#' as the default value.
#' Note that if you are running rbmi in multiple R processes at the same time
#' (that is say multiple calls to `Rscript` at once) then there is a theoretical
#' risk of the processes breaking each other as they attempt to read/write to the
#' same cache folder at the same time. To avoid this potential issue it is recommended
#' to set the cache directory to a unique folder for each R session e.g.
#'
#' ```
#' options("rbmi.cache_dir" = tempdir(check = TRUE))
#' ```
#'
#' ## `rbmi.enable_cache`
#'
#' Default = `TRUE`
#'
#' If `TRUE` then the package will attempt to cache compiled Stan models to the
#' `rbmi.cache_dir` directory. If `FALSE` then the package will re-compile the
#' Stan model each time it is required. If the environment variable `RBMI_ENABLE_CACHE`
#' has been set this will be used as the default value.
#'
#' @examples
#' \dontrun{
#' options(rbmi.cache_dir = "some/directory/path")
#' }
#' @name rbmi-settings
set_options <- function() {
cache_dir <- Sys.getenv(
"RBMI_CACHE_DIR",
unset = tools::R_user_dir("rbmi", which = "cache")
)
enable_cache <- isTRUE(as.logical(Sys.getenv(
"RBMI_ENABLE_CACHE",
unset = "TRUE"
)))
current_opts <- names(options())
rbmi_opts <- list(
rbmi.cache_dir = cache_dir,
rbmi.enable_cache = enable_cache
)
for (opt in names(rbmi_opts)) {
if (!opt %in% current_opts) {
options(rbmi_opts[opt])
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.