Nothing
#' Generate scatter plot(s) using liger object
#' @description This function allows for using available cell metadata to build
#' the x-/y-axis. Available per-cell data can be used to form the color/shape
#' annotation, including cell metadata, raw or processed gene expression, and
#' unnormalized or aligned factor loading. Multiple coloring variable is allowed
#' from the same specification of \code{slot}, and this returns a list of plots
#' with different coloring values. Users can further split the plot(s) by
#' grouping on cells (e.g. datasets).
#' @details Available option for \code{slot} include: \code{"cellMeta"},
#' \code{"rawData"}, \code{"normData"}, \code{"scaleData"}, \code{"H.norm"}
#' and \code{"H"}. When \code{"rawData"}, \code{"normData"} or
#' \code{"scaleData"}, \code{colorBy} has to be a character vector of feature
#' names. When \code{"H.norm"} or \code{"H"}, \code{colorBy} can be any valid
#' index to select one factor of interests. Note that character index follows
#' \code{"Factor_[k]"} format, with replacing \code{[k]} with an integer.
#'
#' When \code{"cellMeta"}, \code{colorBy} has to be an available column name in
#' the table. Note that, for \code{colorBy} as well as \code{x}, \code{y},
#' \code{shapeBy} and \code{splitBy}, since a matrix object is feasible in
#' \code{cellMeta} table, using a column (e.g. named as \code{"column1"} in a
#' certain matrix (e.g. named as \code{"matrixVar"}) should follow the syntax of
#' \code{"matrixVar.column1"}. When the matrix does not have a "colname"
#' attribute, the subscription goes with \code{"matrixVar.V1"},
#' \code{"matrixVar.V2"} and etc. Use \code{"UMAP.1"}, \code{"UMAP.2"},
#' \code{"TSNE.1"} or \code{"TSNE.2"} for the 2D embeddings generated with
#' rliger package. These are based on the nature of \code{as.data.frame} method
#' on a \code{\link[S4Vectors]{DataFrame}} object.
#' @param object A \linkS4class{liger} object
#' @param colorBy Available variable name in specified \code{slot} to look for
#' color annotation information. See details. Default \code{NULL} generates
#' all-black dots.
#' @param slot Choose the slot to find the \code{colorBy} variable. See details.
#' Default \code{"cellMeta"}.
#' @param colorByFunc Default \code{NULL}. A function object that expects a
#' vector/factor/data.frame retrieved by \code{colorBy} as the only input, and
#' returns an object of the same size, so that the all color "aes" are replaced
#' by this output. Useful when, for example, users need to scale the gene
#' expression shown on plot.
#' @param cellIdx Character, logical or numeric index that can subscribe cells.
#' Missing or \code{NULL} for all cells.
#' @param splitBy Character vector of categorical variable names in
#' \code{cellMeta} slot. Split all cells by groupings on this/these variable(s)
#' to produce a scatter plot containing only the cells in each group. Default
#' \code{NULL}.
#' @param shapeBy Available variable name in \code{cellMeta} slot to look for
#' categorical annotation to be reflected by dot shapes. Default \code{NULL}.
#' @param titles Title text. A character scalar or a character vector with as
#' many elements as multiple plots are supposed to be generated. Default
#' \code{NULL}.
#' @inheritDotParams .ggScatter dotOrder dotSize dotAlpha trimHigh trimLow zeroAsNA raster labelBy labelText labelTextSize seed
#' @inheritDotParams .ggplotLigerTheme title subtitle xlab ylab legendColorTitle legendShapeTitle showLegend legendPosition baseSize titleSize subtitleSize xTextSize xTitleSize yTextSize yTitleSize legendTextSize legendTitleSize legendDotSize panelBorder legendNRow legendNCol colorLabels colorValues colorPalette colorDirection naColor colorLow colorMid colorHigh colorMidPoint plotly
#' @param ... More plot setting arguments. See \code{\link{.ggScatter}} and
#' \code{\link{.ggplotLigerTheme}}.
#' @return A ggplot object when a single plot is intended. A list of ggplot
#' objects, when multiple \code{colorBy} variables and/or \code{splitBy} are
#' set. When \code{plotly = TRUE}, all ggplot objects become plotly (htmlwidget)
#' objects.
#' @export
#' @examples
#' plotDimRed(pbmcPlot, colorBy = "dataset", slot = "cellMeta",
#' labelText = FALSE)
#' plotDimRed(pbmcPlot, colorBy = "S100A8", slot = "normData",
#' dotOrder = "ascending", dotSize = 2)
#' plotDimRed(pbmcPlot, colorBy = 2, slot = "H.norm",
#' dotOrder = "ascending", dotSize = 2, colorPalette = "viridis")
plotDimRed <- function(
object,
colorBy = NULL,
useDimRed = NULL,
slot = c("cellMeta", "rawData", "normData",
"scaleData", "H.norm", "H",
"normPeak", "rawPeak"),
colorByFunc = NULL,
cellIdx = NULL,
splitBy = NULL,
shapeBy = NULL,
titles = NULL,
...
) {
slot <- match.arg(slot)
# useDimRed <- useDimRed %||% object@uns$defaultDimRed
# useDimRed <- .findDimRedName(object, useDimRed, stopOnNull = TRUE, returnFirst = TRUE)
plotDF <- as.data.frame(dimRed(object, useDimRed, cellIdx = cellIdx))
x <- colnames(plotDF)[1]
y <- colnames(plotDF)[2]
ann <- .fetchCellMetaVar(object, variables = c(shapeBy, splitBy),
checkCategorical = TRUE, cellIdx = cellIdx,
drop = FALSE, droplevels = TRUE)
if (!is.null(ann)) plotDF <- cbind(plotDF, ann)
cellIdx <- .idxCheck(object, cellIdx, orient = "cell")
# Create copies of `plotDF` in `plotDFList`, where each `plotDF` has only
# one `colorBy` variable
plotDFList <- list()
colorByParam <- list()
if (!is.null(colorBy)) {
colorDF <- retrieveCellFeature(object, feature = colorBy,
slot = slot, cellIdx = cellIdx,
verbose = FALSE)
# When retrieving H/H.norm, exact colname might not be what `colorBy` is
colorBy <- colnames(colorDF)
if (!is.null(colorByFunc))
colorDF[, colorBy] <- colorByFunc(colorDF[, colorBy])
for (i in seq_along(colorBy)) {
if (!colorBy[i] %in% colnames(plotDF)) {
#subDF <- cbind(plotDF, colorDF[, i, drop = FALSE])
plotDFList[[colorBy[i]]] <- cbind(plotDF,
colorDF[, i, drop = FALSE])
} else {
plotDFList[[colorBy[i]]] <- plotDF
plotDFList[[colorBy[i]]][[colorBy[i]]] <- colorDF[, i]
}
# plotDFList[[colorBy[i]]] <- subDF[cellIdx, , drop = FALSE]
colorByParam[[colorBy[i]]] <- colorBy[i]
}
} else {
plotDFList[[1]] <- plotDF#[cellIdx, , drop = FALSE]
colorByParam <- list(NULL)
}
# Split each `colorBy` specific `plotDF` in `plotDFList` by `splitBy`, so
# `plotDFList` first becomes a nested list, where the first level is by
# `colorBy`, and the second level is by `splitBy`
if (!is.null(splitBy)) {
for (i in seq_along(plotDFList)) {
# Might be just one plotDF when 0/1 colorBy set, or more when >1
# colorBy set
plotDFList[[i]] <- split(plotDFList[[i]], plotDFList[[i]][,splitBy])
names(plotDFList[[i]]) <- paste(names(plotDFList)[i],
names(plotDFList[[i]]),
sep = ".")
colorByParam[[i]] <- rep(colorByParam[[i]],
length(plotDFList[[i]]))
}
# Then flatten the nested list by concatenating each colorBy-list.
plotDFList <- Reduce(c, plotDFList)
colorByParam <- Reduce(c, colorByParam)
if (!is.null(colorByParam)) {
names(colorByParam) <- names(plotDFList)
}
}
plotList <- list()
titles <- .checkArgLen(titles, n = length(plotDFList), class = "ANY", .stop = FALSE)
for (i in seq_along(plotDFList)) {
cliID <- cli::cli_process_start("Plotting feature {.val {names(plotDFList)[i]}} on {.val {nrow(plotDFList[[i]])}} cells")
plotList[[i]] <- .ggScatter(plotDF = plotDFList[[i]], x = x, y = y,
colorBy = colorByParam[[i]],
shapeBy = shapeBy, title = titles[i], ...)
cli::cli_process_done(cliID)
}
names(plotList) <- names(plotDFList)
if (length(plotList) == 1) {
return(plotList[[1]])
} else {
return(plotList)
}
}
#' Produce single scatter plot with data frame passed from upstream
#' @details Having package "ggrepel" installed can help adding tidier text
#' labels on the scatter plot.
#' @param plotDF Data frame like object (fortifiable) that contains all
#' necessary information to make the plot.
#' @param x,y Available variable name in \code{cellMeta} slot to look for
#' the dot coordinates. See details.
#' @param colorBy,shapeBy See \code{\link{plotDimRed}}.
#' @param dotOrder Controls the order that each dot is added to the plot. Choose
#' from \code{"shuffle"}, \code{"ascending"}, or \code{"descending"}. Default
#' \code{"shuffle"}, useful when coloring by categories that overlaps (e.g.
#' "dataset"), \code{"ascending"} can be useful when coloring by a continuous
#' variable (e.g. gene expression) where high values needs more
#' highlight. \code{NULL} use default order.
#' @param dotSize,dotAlpha Numeric, controls the size or transparency of all
#' dots. Default \code{getOption("ligerDotSize")} (1) and \code{0.9}.
#' @param trimHigh,trimLow Numeric, limit the largest or smallest value of
#' continuous \code{colorBy} variable. Default \code{NULL}.
#' @param zeroAsNA Logical, whether to set zero values in continuous
#' \code{colorBy} variable to \code{NA} so the color of these value.
#' @param raster Logical, whether to rasterize the plot. Default \code{NULL}
#' automatically rasterize the plot when number of total dots to be plotted
#' exceeds 100,000.
#' @param labelBy A variable name available in \code{plotDF}. If the variable is
#' categorical (a factor), the label position will be the median coordinates of
#' all dots within the same group. Unique labeling in character vector for each
#' dot is also acceptable. Default \code{colorBy}.
#' @param labelText Logical, whether to show text label at the median position
#' of each categorical group specified by \code{colorBy}. Default \code{TRUE}.
#' Does not work when continuous coloring is specified.
#' @param labelTextSize Numeric, controls the size of label size when
#' \code{labelText = TRUE}. Default \code{4}.
#' @param ggrepelLabelTick Logical, whether to force showing the tick between
#' label texts and the position they point to. Useful when a lot of text labels
#' are required. Default \code{FALSE}. Run
#' \code{options(ggrepel.max.overlaps = n)} before plotting to set allowed label
#' overlaps.
#' @param seed Random seed for reproducibility. Default \code{1}.
#' @param ... More theme setting arguments passed to
#' \code{\link{.ggplotLigerTheme}}.
#' @return ggplot object by default. When \code{plotly = TRUE}, returns
#' plotly (htmlwidget) object.
.ggScatter <- function(
plotDF,
x,
y,
colorBy = NULL,
shapeBy = NULL,
dotOrder = c("shuffle", "ascending", "descending"),
dotSize = getOption("ligerDotSize"),
dotAlpha = 0.9,
trimHigh = NULL,
trimLow = NULL,
zeroAsNA = TRUE,
raster = NULL,
labelBy = colorBy,
labelText = TRUE,
labelTextSize = 4,
ggrepelLabelTick = FALSE,
seed = 1,
...
) {
dotOrder <- match.arg(dotOrder)
set.seed(seed)
raster <- .checkRaster(nrow(plotDF), raster)
if (!is.null(colorBy)) {
if (dotOrder == "shuffle") {
# Always put NA at bottom layer, i.e. plot them first
isNA <- which(is.na(plotDF[[colorBy]]))
nonNA <- which(!is.na(plotDF[[colorBy]]))
idx <- sample(nonNA)
plotDF <- plotDF[c(isNA, idx), ]
} else if (dotOrder == "ascending") {
plotDF <- plotDF[order(plotDF[[colorBy]], decreasing = FALSE,
na.last = FALSE),]
} else {
plotDF <- plotDF[order(plotDF[[colorBy]], decreasing = TRUE,
na.last = FALSE),]
}
if (!is.factor(plotDF[[colorBy]])) {
if (!is.null(trimHigh))
plotDF[[colorBy]][plotDF[[colorBy]] > trimHigh] <- trimHigh
if (!is.null(trimLow))
plotDF[[colorBy]][plotDF[[colorBy]] < trimLow] <- trimLow
if (isTRUE(zeroAsNA))
plotDF[[colorBy]][plotDF[[colorBy]] == 0] <- NA
}
}
# TODO: Any way to avoid using these many conditions?
if (!is.null(colorBy)) {
if (!is.null(shapeBy))
p <- ggplot2::ggplot(plotDF,
ggplot2::aes(x = .data[[x]],
y = .data[[y]],
color = .data[[colorBy]],
shape = .data[[shapeBy]]))
else
p <- ggplot2::ggplot(plotDF,
ggplot2::aes(x = .data[[x]],
y = .data[[y]],
color = .data[[colorBy]]))
} else {
if (!is.null(shapeBy))
p <- ggplot2::ggplot(plotDF,
ggplot2::aes(x = .data[[x]],
y = .data[[y]],
shape = .data[[shapeBy]]))
else
p <- ggplot2::ggplot(plotDF,
ggplot2::aes(x = .data[[x]],
y = .data[[y]]))
}
if (isTRUE(raster)) {
p <- p + scattermore::geom_scattermore(pointsize = dotSize,
alpha = dotAlpha)
} else {
p <- p + ggplot2::geom_point(size = dotSize, stroke = 0,
alpha = dotAlpha)
}
# For categorical grouping
if (!is.null(labelBy) &&
(is.factor(plotDF[[labelBy]]) || is.character(plotDF[[labelBy]]))) {
if (isTRUE(labelText)) {
textData <- dplyr::group_by(plotDF, .data[[labelBy]]) %>%
dplyr::summarise(
x = stats::median(.data[[x]]),
y = stats::median(.data[[y]])
) %>%
dplyr::filter(!is.na(.data[[labelBy]]), !is.na(x), !is.na(y))
if (!requireNamespace("ggrepel", quietly = TRUE)) {
p <- p + ggplot2::annotate(
"text", x = textData$x, y = textData$y,
label = textData[[labelBy]], color = "black",
size = labelTextSize
)
} else {
if (isTRUE(ggrepelLabelTick)) {
p <- p + ggrepel::geom_text_repel(
data = textData,
mapping = ggplot2::aes(x = .data[["x"]],
y = .data[["y"]],
label = .data[[labelBy]]),
color = "black", size = labelTextSize, inherit.aes = FALSE,
bg.colour = "white", bg.r = .2,
force = 1,
min.segment.length = 0,
nudge_y = 1
)
} else {
p <- p + ggrepel::geom_text_repel(
data = textData,
mapping = ggplot2::aes(x = .data[["x"]],
y = .data[["y"]],
label = .data[[labelBy]]),
color = "black", size = labelTextSize, inherit.aes = FALSE,
bg.colour = "white", bg.r = .2, hjust = 0.5, vjust = 0.5
)
}
}
# Important to have `inherit.aes = F` above, otherwise
# `geom_text_repel` looks for "shapeBy" setting which this newly
# generated label coordinate table just doesn't have.
}
}
p <- .ggplotLigerTheme(p, ...)
return(p)
}
#' Generate violin/box plot(s) using liger object
#' @description This function allows for using available cell metadata, feature
#' expression or factor loading to generate violin plot, and grouping the data
#' with available categorical cell metadata. Available categorical cell metadata
#' can be used to form the color annotation. When it is different from the
#' grouping, it forms a nested grouping. Multiple y-axis variables are allowed
#' from the same specification of \code{slot}, and this returns a list of violin
#' plot for each. Users can further split the plot(s) by grouping on cells (e.g.
#' datasets).
#' @details Available option for \code{slot} include: \code{"cellMeta"},
#' \code{"rawData"}, \code{"normData"}, \code{"scaleData"}, \code{"H.norm"}
#' and \code{"H"}. When \code{"rawData"}, \code{"normData"} or
#' \code{"scaleData"}, \code{y} has to be a character vector of feature names.
#' When \code{"H.norm"} or \code{"H"}, \code{colorBy} can be any valid index to
#' select one factor of interests. Note that character index follows
#' \code{"Factor_[k]"} format, with replacing \code{[k]} with an integer.
#'
#' When \code{"cellMeta"}, \code{y} has to be an available column name in
#' the table. Note that, for \code{y} as well as \code{groupBy}, \code{colorBy}
#' and \code{splitBy} since a matrix object is feasible in \code{cellMeta}
#' table, using a column (e.g. named as \code{"column1"} in a certain matrix
#' (e.g. named as \code{"matrixVar"}) should follow the syntax of
#' \code{"matrixVar.column1"}. When the matrix does not have a "colname"
#' attribute, the subscription goes with \code{"matrixVar.V1"},
#' \code{"matrixVar.V2"} and etc. These are based on the nature of
#' \code{as.data.frame} method on a \code{\link[S4Vectors]{DataFrame}} object.
#'
#' \code{groupBy} is basically send to \code{ggplot2::aes(x)}, while
#' \code{colorBy} is for the "colour" aesthetics. Specifying \code{colorBy}
#' without \code{groupBy} visually creates grouping but there will not be
#' varying values on the x-axis, so \code{boxWidth} will be forced to the same
#' value as \code{violinWidth} under this situation.
#' @param object \linkS4class{liger} object
#' @param y Available variable name in \code{slot} to look for the value to
#' visualize.
#' @param groupBy,colorBy Available variable name in \code{cellMeta} slot to
#' look for categorical grouping. See details. Default \code{NULL} produces no
#' grouping and all-black graphic elements.
#' @param slot Choose the slot to find the \code{y} variable. See Details.
#' Default \code{"cellMeta"}.
#' @param yFunc A function object that expects a vector/factor/data.frame
#' retrieved by \code{y} as the only input, and returns an object of the same
#' size, so that the y-axis is replaced by this output. Useful when, for
#' example, users need to scale the gene expression shown on plot.
#' @param cellIdx Character, logical or numeric index that can subscribe cells.
#' Missing or \code{NULL} for all cells.
#' @param splitBy Character vector of categorical variable names in
#' \code{cellMeta} slot. Split all cells by groupings on this/these variable(s)
#' to produce a violin plot containing only the cells in each group. Default
#' \code{NULL}.
#' @param titles Title text. A character scalar or a character vector with as
#' many elements as multiple plots are supposed to be generated. Default
#' \code{NULL}.
#' @inheritDotParams .ggCellViolin violin violinAlpha violinWidth box boxAlpha boxWidth dot dotColor dotSize xlabAngle raster seed
#' @inheritDotParams .ggplotLigerTheme title subtitle xlab ylab legendFillTitle showLegend legendPosition baseSize titleSize subtitleSize xTextSize xTitleSize yTextSize yTitleSize legendTextSize legendTitleSize panelBorder legendNRow legendNCol colorLabels colorValues plotly
#' @return A ggplot object when a single plot is intended. A list of ggplot
#' objects, when multiple \code{y} variables and/or \code{splitBy} are set. When
#' \code{plotly = TRUE}, all ggplot objects become plotly (htmlwidget) objects.
#' @export
#' @examples
#' plotCellViolin(pbmcPlot, y = "nUMI", groupBy = "dataset", slot = "cellMeta")
#' plotCellViolin(pbmcPlot, y = "nUMI", groupBy = "leiden_cluster",
#' slot = "cellMeta", splitBy = "dataset",
#' colorBy = "leiden_cluster",
#' box = TRUE, dot = TRUE,
#' ylab = "Total counts per cell",
#' colorValues = RColorBrewer::brewer.pal(8, "Set1"))
#' plotCellViolin(pbmcPlot, y = "S100A8", slot = "normData",
#' yFunc = function(x) log2(10000*x + 1),
#' groupBy = "dataset", colorBy = "leiden_cluster",
#' box = TRUE, ylab = "S100A8 Expression")
plotCellViolin <- function(
object,
y,
groupBy = NULL,
slot = c("cellMeta", "rawData", "normData",
"scaleData", "H.norm", "H"),
yFunc = NULL,
cellIdx = NULL,
colorBy = NULL,
splitBy = NULL,
titles = NULL,
...
) {
slot <- match.arg(slot)
# `groupBy` can be NULL, if so plotDF has ncell x 0 dimension
if (is.null(groupBy)) {
groupBy <- "All Cells"
plotDF <- data.frame(factor(rep(NA, ncol(object))),
row.names = colnames(object))
colnames(plotDF) <- groupBy
} else {
plotDF <- .fetchCellMetaVar(object, groupBy, checkCategorical = TRUE,
drop = FALSE, cellIdx = cellIdx,
droplevels = TRUE)
}
plotDF[,splitBy] <- .fetchCellMetaVar(object, splitBy, cellIdx = cellIdx,
checkCategorical = TRUE, drop = FALSE,
droplevels = TRUE)
if (!is.null(colorBy))
plotDF[,colorBy] <- .fetchCellMetaVar(object, colorBy,
cellIdx = cellIdx,
checkCategorical = TRUE)
plotDFList <- list()
yParam <- list()
# Create copies of `plotDF` in `plotDFList`, where each `plotDF` has only
# one `y` variable
yDF <- retrieveCellFeature(object, y, slot, cellIdx = cellIdx,
verbose = FALSE)
# When retrieving H/H.norm, exact colname might not be what `colorBy` is
y <- colnames(yDF)
if (!is.null(yFunc))
yDF[, y] <- yFunc(yDF[, y])
for (i in seq_along(y)) {
if (!y[i] %in% colnames(plotDF)) {
plotDFList[[y[i]]] <- cbind(plotDF, yDF[, i, drop = FALSE])
}
yParam[[y[i]]] <- y[i]
}
# Split each `y` specific `plotDF` in `plotDFList` by `splitBy`, so
# `plotDFList` first becomes a nested list, where the first level is by `y`,
# and the secod level is by `splitBy`
if (!is.null(splitBy)) {
for (i in seq_along(plotDFList)) {
plotDFList[[i]] <- split(plotDFList[[i]], plotDFList[[i]][,splitBy])
names(plotDFList[[i]]) <- paste(names(plotDFList)[i],
names(plotDFList[[i]]),
sep = ".")
yParam[[i]] <- rep(yParam[[i]], length(names(plotDFList[[i]])))
}
# Then flatten the nested list by concatenating each y-list.
plotDFList <- Reduce(c, plotDFList)
yParam <- Reduce(c, yParam)
names(yParam) <- names(plotDFList)
}
plotList <- list()
titles <- .checkArgLen(titles, n = length(plotDFList), class = "ANY", .stop = FALSE)
for (i in seq_along(plotDFList)) {
plotList[[i]] <- .ggCellViolin(plotDF = plotDFList[[i]],
y = yParam[[i]], groupBy = groupBy,
colorBy = colorBy, title = titles[i],
...)
}
names(plotList) <- names(plotDFList)
if (length(plotList) == 1) {
return(plotList[[1]])
} else {
return(plotList)
}
}
#' Produce single violin plot with data frame passed from upstream
#' @param plotDF Data frame like object (fortifiable) that contains all
#' necessary information to make the plot.
#' @param y,groupBy,colorBy See \code{\link{plotCellViolin}}.
#' @param violin,box,dot Logical, whether to add violin plot, box plot or dot
#' (scatter) plot, respectively. Layers are added in the order of dot, violin,
#' and violin on the top surface. By default, only violin plot is generated.
#' @param violinAlpha,boxAlpha Numeric, controls the transparency of layers.
#' Default \code{0.8}, \code{0.6}, respectively.
#' @param violinWidth,boxWidth Numeric, controls the width of violin/box
#' bounding box. Default \code{0.9} and \code{0.4}.
#' @param dotColor,dotSize Numeric, globally controls the appearance of all
#' dots. Default \code{"black"} and \code{getOption("ligerDotSize")} (1).
#' @param xlabAngle Numeric, counter-clockwise rotation angle of X axis label
#' text. Default \code{45}.
#' @param raster Logical, whether to rasterize the dot plot. Default \code{NULL}
#' automatically rasterizes the dot plot when number of total cells to be
#' plotted exceeds 100,000.
#' @param seed Random seed for reproducibility. Default \code{1}.
#' @param ... More theme setting arguments passed to
#' \code{\link{.ggplotLigerTheme}}.
#' @return ggplot object by default. When \code{plotly = TRUE}, returns
#' plotly (htmlwidget) object.
.ggCellViolin <- function(
plotDF,
y,
groupBy = NULL,
colorBy = NULL,
violin = TRUE,
violinAlpha = 0.8,
violinWidth = 0.9,
box = FALSE,
boxAlpha = 0.6,
boxWidth = 0.4,
dot = FALSE,
dotColor = "black",
dotSize = getOption("ligerDotSize"),
xlabAngle = 45,
raster = NULL,
seed = 1,
...
) {
raster <- .checkRaster(nrow(plotDF), raster)
if (is.null(colorBy)) {
plot <- ggplot2::ggplot(plotDF,
ggplot2::aes(x = .data[[groupBy]],
y = .data[[y]]))
} else {
plot <- ggplot2::ggplot(plotDF,
ggplot2::aes(x = .data[[groupBy]],
y = .data[[y]],
fill = .data[[colorBy]]))
if (!identical(colorBy, groupBy)) boxWidth <- violinWidth
}
if (isTRUE(dot)) {
if (!is.null(dotColor)) {
if (isTRUE(raster))
plot <- plot + scattermore::geom_scattermore(
size = dotSize, color = dotColor, stroke = 0,
position = "jitter"
)
else
plot <- plot + ggplot2::geom_jitter(size = dotSize,
color = dotColor,
stroke = 0, height = 0)
} else {
if (isTRUE(raster))
plot <- plot + scattermore::geom_scattermore(
size = dotSize, stroke = 0, position = "jitter"
)
else
plot <- plot + ggplot2::geom_jitter(size = dotSize,
stroke = 0, height = 0)
}
}
if (isTRUE(violin))
plot <- plot + ggplot2::geom_violin(alpha = violinAlpha,
color = "black",
position = "dodge",
width = violinWidth)
if (isTRUE(box))
plot <- plot + ggplot2::geom_boxplot(alpha = boxAlpha, fill = "white",
position = "dodge",
width = boxWidth)
plot <- .ggplotLigerTheme(plot, xlabAngle = xlabAngle, ...)
if (groupBy == "All Cells") {
plot <- plot + ggplot2::theme(axis.text.x = ggplot2::element_blank(),
axis.ticks.x = ggplot2::element_blank(),
axis.title.x = ggplot2::element_blank())
}
plot
}
#' Generic ggplot theme setting for rliger package
#' @description Controls content and size of all peripheral texts.
#' @param plot ggplot object passed from wrapper plotting functions
#' @param title,subtitle,xlab,ylab Main title, subtitle or X/Y axis title text.
#' By default, no main title or subtitle will be set, and X/Y axis title will be
#' the names of variables used for plotting. Use \code{NULL} to hide elements.
#' \code{TRUE} for \code{xlab} or \code{ylab} shows default values.
#' @param xlabAngle Numeric, counter-clockwise rotation angle of X axis label
#' text. Default \code{0} shows horizontal text.
#' @param legendColorTitle Legend title text for color aesthetics, often used
#' for categorical or continuous coloring of dots. Default \code{NULL} shows the
#' original variable name.
#' @param legendFillTitle Legend title text for fill aesthetics, often used for
#' violin, box, bar plots. Default \code{NULL} shows the original variable name.
#' @param legendShapeTitle Legend title text for shape aesthetics, often used
#' for shaping dots by categorical variable. Default \code{NULL} shows the
#' original variable name.
#' @param legendSizeTitle Legend title text for size aesthetics, often used for
#' sizing dots by continuous variable. Default \code{NULL} shows the original
#' variable name.
#' @param showLegend Whether to show the legend. Default \code{TRUE}.
#' @param legendPosition Text indicating where to place the legend. Choose from
#' \code{"top"}, \code{"bottom"}, \code{"left"} or \code{"right"}. Default
#' \code{"right"}.
#' @param baseSize One-parameter control of all text sizes. Individual text
#' element sizes can be controlled by other size arguments. "Title" sizes are
#' 2 points larger than "text" sizes when being controlled by this.
#' @param titleSize,xTitleSize,yTitleSize,legendTitleSize Size of main title,
#' axis titles and legend title. Default \code{NULL} controls by
#' \code{baseSize + 2}.
#' @param subtitleSize,xTextSize,yTextSize,legendTextSize Size of subtitle text,
#' axis texts and legend text. Default \code{NULL} controls by \code{baseSize}.
#' @param xFacetSize Size of facet strip label text on x-axis. Default
#' \code{NULL} controls by \code{baseSize - 2}.
#' @param yFacetSize Size of facet strip label text on y-axis. Default
#' \code{NULL} controls by \code{baseSize - 2}.
#' @param legendDotSize Allow dots in legend region to be large enough to see
#' the colors/shapes clearly. Default \code{4}.
#' @param panelBorder Whether to show rectangle border of the panel instead of
#' using ggplot classic bottom and left axis lines. Default \code{FALSE}.
#' @param colorLabels Character vector for modifying category names in a
#' color legend. Passed to \code{ggplot2::scale_color_manual(labels)}. Default
#' \code{NULL} uses original levels of the factor.
#' @param colorValues Character vector of colors for modifying category colors
#' in a color legend. Passed to \code{ggplot2::scale_color_manual(values)}.
#' Default \code{NULL} uses internal selected palette when <= 26 categories are
#' presented, otherwise ggplot hues.
#' @param legendNRow,legendNCol Integer, when too many categories in one
#' variable, arranges number of rows or columns. Default \code{NULL},
#' automatically split to \code{ceiling(levels(variable)/15)} columns.
#' @param colorPalette For continuous coloring, an index or a palette name to
#' select from available options from ggplot
#' \code{\link[ggplot2]{scale_brewer}} or \code{\link[viridisLite]{viridis}}.
#' Default \code{"magma"}.
#' @param colorDirection Choose \code{1} or \code{-1}. Applied when
#' \code{colorPalette} is from Viridis options. Default \code{-1} use darker
#' color for higher value, while \code{1} reverses this direction.
#' @param colorLow,colorMid,colorHigh,colorMidPoint All four of these must be
#' specified to customize palette with
#' @param naColor The color code for \code{NA} values. Default \code{"#DEDEDE"}.
#' \code{\link[ggplot2]{scale_colour_gradient2}}. Default \code{NULL}.
#' @param plotly Whether to use plotly to enable web based interactive browsing
#' for the plot. Requires installation of package "plotly". Default
#' \code{FALSE}.
#' @return Updated ggplot object by default. When \code{plotly = TRUE}, returns
#' plotly (htmlwidget) object.
.ggplotLigerTheme <- function(
plot,
# All text content
title = NULL,
subtitle = NULL,
xlab = TRUE,
ylab = TRUE,
xlabAngle = 0,
legendColorTitle = NULL,
legendFillTitle = NULL,
legendShapeTitle = NULL,
legendSizeTitle = NULL,
showLegend = TRUE,
legendPosition = "right",
# All sizes
baseSize = getOption("ligerBaseSize"),
titleSize = NULL,
subtitleSize = NULL,
xTextSize = NULL,
xFacetSize = NULL,
xTitleSize = NULL,
yTextSize = NULL,
yFacetSize = NULL,
yTitleSize = NULL,
legendTextSize = NULL,
legendTitleSize = NULL,
legendDotSize = 4,
# Other
panelBorder = FALSE,
legendNRow = NULL,
legendNCol = NULL,
# Coloring
colorLabels = NULL,
colorValues = NULL,
colorPalette = "magma",
colorDirection = -1,
naColor = "#DEDEDE",
colorLow = NULL,
colorMid = NULL,
colorHigh = NULL,
colorMidPoint = NULL,
plotly = FALSE
) {
if (!is.null(title))
plot <- plot + ggplot2::ggtitle(title, subtitle = subtitle)
# Broadcast one-param setting to each
titleSize <- titleSize %||% baseSize + 2
subtitleSize <- subtitleSize %||% baseSize
xTextSize <- xTextSize %||% baseSize
xFacetSize <- xFacetSize %||% baseSize - 2
xTitleSize <- xTitleSize %||% baseSize + 2
yTextSize <- yTextSize %||% baseSize
yFacetSize <- yFacetSize %||% baseSize - 2
yTitleSize <- yTitleSize %||% baseSize + 2
legendTextSize <- legendTextSize %||% baseSize
legendTitleSize <- legendTitleSize %||% baseSize + 2
# Set x/y axis titles
if (!isTRUE(xlab)) {
if (is.null(xlab) || isFALSE(xlab)) {
xlab <- NULL
}
plot <- plot + ggplot2::xlab(xlab)
}
if (!isTRUE(ylab)) {
if (is.null(ylab) || isFALSE(ylab)) {
ylab <- NULL
}
plot <- plot + ggplot2::ylab(ylab)
}
# Set sizes
plot <- plot +
ggplot2::theme_classic() +
ggplot2::theme(
plot.title = ggplot2::element_text(size = titleSize),
plot.subtitle = ggplot2::element_text(size = subtitleSize),
axis.text.x = ggplot2::element_text(size = xTextSize, hjust = ifelse(xlabAngle == 0, 0.5, 1), angle = xlabAngle),
axis.title.x = ggplot2::element_text(size = xTitleSize),
axis.text.y = ggplot2::element_text(size = yTextSize),
axis.title.y = ggplot2::element_text(size = yTitleSize),
strip.text.x = ggplot2::element_text(size = xFacetSize),
strip.text.y = ggplot2::element_text(size = yFacetSize),
legend.text = ggplot2::element_text(size = legendTextSize),
legend.title = ggplot2::element_text(size = legendTitleSize)
)
if (isTRUE(panelBorder)) {
plot <- plot + ggplot2::theme(
axis.line = ggplot2::element_line(linewidth = 0),
panel.border = ggplot2::element_rect(fill = NA, colour = "black",
linewidth = 0.7)
)
}
# legend region settings. Need to prepare a list so we call
# `guides()` once, otherwise any previous calls will be overwritten.
guide <- list(colour = list(), fill = list(),
shape = list(), size = list())
guideFunc <- list(colour = NULL, shape = NULL, size = NULL)
legendTitle <- list(colour = legendColorTitle,
fill = legendFillTitle,
shape = legendShapeTitle,
size = legendSizeTitle)
for (a in names(guide)) {
varName <- rlang::as_label(plot$mapping[[a]])
if (varName == "NULL") next
if (is.factor(plot$data[[varName]])) {
# Categorical setting
guideFunc[[a]] <- ggplot2::guide_legend
# Set dot size in legend
guide[[a]]$override.aes <- list(size = legendDotSize)
# Set nrow/ncol to arrange the legend categories
if (is.null(legendNRow) & is.null(legendNCol)) {
# When nothing set, ggplot automatically makes it one
# column, which might be too long, so I add a auto-
# arrangement to limit max nrow to 10 but still evenly
# distribute the columns.
nCategory <- length(levels(plot$data[[varName]]))
if (nCategory > 15)
legendNCol <- ceiling(nCategory/15)
}
guide[[a]]$nrow <- legendNRow
guide[[a]]$ncol <- legendNCol
if (is.null(colorLabels)) {
colorLabels <- levels(plot$data[[varName]])
}
if (is.null(colorValues)) {
if (nlevels(plot$data[[varName]]) <= length(scPalette))
colorValues <- scPalette[seq_len(nlevels(plot$data[[varName]]))]
else {
colorValues <- scales::hue_pal()(
length(levels(plot$data[[varName]]))
)
}
}
if (a %in% c("colour", "fill")) {
plot <- plot +
.setColorLegendPalette(plot$data[[varName]],
aesType = a,
labels = colorLabels,
values = colorValues,
naColor = naColor)
}
} else {
# continuous setting
if (a %in% c("colour", "fill")) {
guideFunc[[a]] <- ggplot2::guide_colourbar
# Set continuous palette
plot <- plot +
.setColorBarPalette(aesType = a,
palette = colorPalette,
direction = colorDirection,
naColor = naColor,
low = colorLow, mid = colorMid,
high = colorHigh,
midPoint = colorMidPoint)
} else {
guideFunc[[a]] <- ggplot2::guide_legend
}
if (a == "size") {
guide[[a]]$fill <- "black"
}
}
# Set title for the variable
if (!is.null(legendTitle[[a]]))
guide[[a]]$title <- legendTitle[[a]]
# Finalise the setting
guide[[a]] <- do.call(guideFunc[[a]], guide[[a]])
}
guide <- lapply(guide, function(x) if (!identical(x, list())) x else NULL)
plot <- plot +
ggplot2::guides(
colour = guide$colour,
shape = guide$shape,
size = guide$size,
fill = guide$fill
) +
ggplot2::theme(
legend.position = legendPosition
)
if (isFALSE(showLegend)) {
plot <- plot + ggplot2::theme(legend.position = "none")
}
if (isTRUE(plotly)) {
if (requireNamespace("plotly", quietly = TRUE)) {
plot <- plotly::ggplotly(plot)
} else {
cli::cli_alert_danger(
"Package {.pkg plotly} is needed for interactive browsing."
)
cli::cli_alert_info("Please run {.code install.packages('plotly')} to enable it.")
cli::cli_alert_info("Returning the original {.cls ggplot}.")
}
}
return(plot)
}
.setColorLegendPalette <- function(
fct,
aesType = c("colour", "fill"),
labels = NULL,
values = NULL,
naColor = "#DEDEDE"
) {
aesType <- match.arg(aesType)
layer <- NULL
lvlUse <- table(fct) > 0
labels <- labels[lvlUse]
values <- values[lvlUse]
if (!is.null(labels) && !is.null(values)) {
if (aesType == "colour") {
layer <- ggplot2::scale_color_manual(values = values,
labels = labels,
na.value = naColor)
} else {
layer <- ggplot2::scale_fill_manual(values = values,
labels = labels,
na.value = naColor)
}
}
return(layer)
}
.setColorBarPalette <- function(
aesType = c("colour", "fill"),
palette = "magma",
direction = 1,
naColor = "#DEDEDE",
low = NULL,
mid = NULL,
high = NULL,
midPoint = NULL
) {
aesType <- match.arg(aesType)
viridisOptions <- c(
"magma", "A", "inferno", "B", "plasma", "C", "viridis", "D",
"cividis", "E", "rocket", "F", "mako", "G", "turbo", "H"
)
# TODO: discrete color palette
layer <- NULL
if (!is.null(low) & !is.null(mid) &
!is.null(high) & !is.null(midPoint)) {
# Only start to build customized color bar if all four arguments
# are specified
layer <- ggplot2::scale_colour_gradient2(low = low, mid = mid,
high = high,
midpoint = midPoint,
na.value = naColor)
} else if (!is.null(palette)) {
# Otherwise, choose a palette based on non-NULL name
if (palette %in% viridisOptions) {
if (aesType == "colour")
layer <- ggplot2::scale_colour_viridis_c(option = palette,
direction = direction,
na.value = naColor)
else
layer <- ggplot2::scale_fill_viridis_c(option = palette,
direction = direction,
na.value = naColor)
}
else
if (aesType == "colour")
layer <- ggplot2::scale_colour_distiller(palette = palette,
direction = direction,
na.value = naColor)
else
layer <- ggplot2::scale_fill_distiller(palette = palette,
direction = direction,
na.value = naColor)
}
# When nothing set, return NULL. "+ NULL" on a ggplot object doesn't
# change anything
return(layer)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.