R/rms.trans.s

Defines functions makepredictcall.rms value.chk gparms strat gTrans scored catg rcs lsp pol matrx asis set.atr des.args

Documented in asis catg gTrans lsp makepredictcall.rms matrx pol rcs scored strat

# design.trans   FEH 4 Oct 90
# Contains individual functions for creating sub-design matrices from
# vectors, for use with design().
# code  name
# 1	asis	leave variable coded as-is, get default name, label,
#		limits, values
# 2	pol	polynomial expansion
# 3	lsp	linear spline
# 4	rcs	restricted cubic spline
# 5	catg	category
# 7	scored	scored ordinal variable
# 8	strat	stratification factor
#10	matrx	matrix factor - used to keep groups of variables together
#		as one factor
#11 gTrans - general transformations
#
# A makepredictcall method is defined so that the transformation
# functions may be used outside of rms fitting functions.
#
#	des.args generic function for retrieving arguments
#	set.atr generic function to set attributes of sub design matrix
#	options sets default options
#	[.rms subsets variables, keeping attributes
#	gparms	retrieve parms for design or fit object.  Not used by any
#		of these routines, but used by analyst to force a new
#		fit to use same parms as previous fit for a given factor.
#	value.chk
#		Check a given list of values for a factor for validity,
#		or if list is NA, return list of possible values
#	
# Default label is attr(x,"label") or argument name if label= omitted.
# First argument can be as follows, using asis as an example:
#	asis(x, ...)		name="x", label=attr(x,"label") or "x"
#				if NULL
#	asis(w=abs(q), ...)	name="w", label=attr(x,"label") or "w"
#	asis(age=xx)		name="age", label=label attr or "age"
#	asis(x,label="Age, yr")	name="x", label="Age, yr"
#	asis(age=x,label=	name="age", label="Age in Years"
#		"Age in Years")
#	matrx(dx=cbind(dx1=dx1,dx2=dx2))	name="dx", individual names
#						dx1 and dx2
# For matrx, default label is list of column names.
# An additional argument, name, can be used to instead specify the name of the
# variable.  This is used when the functions are implicitly called from within
# design().
#
# The routines define dimnames for the returned object with column
# names = expanded list of names based on original name.
# assume.code is added to attributes of returned matrix.  Is 1-8
# corresponding to transformation routines asis-strat above, 10 for matrx.
# Adds attribute nonlinear, one element/column of expanded design matrix.
# nonlinear=T if column is a nonlinear expansion of original variable,
# F if linear part or not applicable
# (e.g. dummy variable for category -> F).  For matrx, all are linear.
#
# System options used: nknots for default number of knots in restr. cubic spline
# and poly.degree, default degree of polynomials 
# Second argument to routines is the parameters (parms) of the
# transformation (except for asis), defined as follows:
#
#	poly	order of polynomial, e.g. 2 for quadratic
#	lsp	list of knots
#	rcs	number of knots if parms=1 element (-> compute default
#		knot locations), actual knot locations if >2 elements
#		(2 knots not allowed for restr. cubic spline)
#	catg	list of value labels corresponding to values 1,2,3,...
#	scored	list of unique values of the variable
#	strat	list of value labels corresponding to values 1,2,3
#
# For catg and strat, parms are omitted if the variable is character or
# is already an S category variable.
#
# Argument retrieval: After variable and optional parms, other variables
# may be named or positional, in the following order: label, name.
# For matrx, parms are not allowed.
#
# Function to return list with elements name, parms, label. 
# corresponding to arguments in call to asis, etc.  parms=NULL if 
# parms.allowed=F.  Reason for going to this trouble is that first arg to
# asis, etc. is allowed to be a named argument to set a new name for it.
# With ordinary argument fetching, remaining arguments would have to be
# named.  This logic allows them to be named or positional in order:
# parms (if allowed), label.
#
# If options(Design.attr) is non-null, looks up attributes in elements
# in Design.attr corresponding to the name of the current variable.
# This is used to get predicted values when the original fitting
# function (e.g., rcs) derived parms of the transformation from the data.
#
des.args <- function(x, parms.allowed, call.args) {
  nam <- names(x)
  if(! length(nam)) nam <- rep("", 5)
  name <- nam[1]
  if(name=="") {
    form <- formula(call("~",as.name("...y..."), call.args[[2]]))
    name <- var.inner(form)
  }
  pa <- parms.allowed
  argu <- function(x,karg, arg.name, parms.all, nm)	{
	if(! parms.all) karg <- karg-1
	k <- charmatch(arg.name, nm, 0)	#k>0 : named arg found
    ## Added karg <= length(x) 9Apr02 for R; R doesn't return NULL
    ## like S+
	if(k > 0) x[[k]] else 
	if(length(nm) < karg || nm[karg] != "") NULL else
     if(karg <= length(x)) x[[karg]] else NULL
  }
  if(parms.allowed) parms <- argu(x, 2, "parms", pa, nam) else {
	parms <- NULL
	if(charmatch("parms", nam, 0) > 0)
      stop(paste("parms not allowed for", as.character(call.args[1])))
  }
 
  nm <- argu(x, 5, "name", pa, nam)
  if(length(nm)) name <- nm
  if(length(.Options$Design.attr)) {
	atr <- .Options$Design.attr
	i <- charmatch(name, atr$name, 0)
	if(! length(i))stop("program logic error for options(factor.number)")
	parmi <- atr$parms[[name]]
	return(list(name=atr$name[i], parms=parmi, label=atr$label[i],
                units=atr$units[i]))		# added units 9Jun99
  }

  label <- argu(x, 3, "label", pa, nam)
  atx <- attributes(x[[1]])  # 9Jun99
  if(! length(label)) label <- atx$label   # 9Jun99 attr(x[[1]],"label")
  if(! length(label)) label <- name

  list(name=name, parms=parms, label=label, units=atx$units)  #9Jun99
  
}

## Function to list all attributes of new sub-design matrix
set.atr <- function(xd, x, z, colnames, assume, code, parms, nonlinear,
                    tex=NULL) {
  ##Note: x argument isn't used
  w <- if(is.matrix(xd))
    list(dim=dim(xd),dimnames=list(NULL,colnames),class="rms",
         name=z$name, label=z$label, assume=assume, assume.code=code,
         parms=parms, 
         nonlinear=nonlinear,colnames=colnames,units=z$units)
  else list(dim=dim(xd), class="rms",
            name=z$name, label=z$label, assume=assume, assume.code=code,
            parms=parms, 
            nonlinear=nonlinear,colnames=colnames,units=z$units)
  if(length(tex)) w$tex <- tex
  w
}

## asis transformation - no transformation	
asis <- function(...) {
  cal <- sys.call()
  xx <- list(...)
  z <- des.args(xx, FALSE, cal)
  xd <- xx[[1]]
  if(is.factor(xd)) {
    attr(xd,"class") <- NULL
  }
  if(! (is.numeric(xd) | is.logical(xd))) {
    stop(paste(z$name,"is not numeric"))
  }
  
  attributes(xd) <- set.atr(xd,xd,z,z$name,"asis",1,NULL,FALSE)
  xd
}

## matrx transformation - no transformation, keep original vars as matrix
## column names as parameter names, parms=column medians
matrx <- function(...) {

  cal <- sys.call()
  xx <- list(...)
  z <- des.args(xx, FALSE, cal)

  xd <- xx[[1]]
  nc <- ncol(xd)
  if(! is.matrix(xd)) {
    stop(paste(z$name, "is not a matrix"))
  }
  colname <- dimnames(xd)[[2]]
  if(length(colname)==0 && nc > 0)
    colname <- paste0(z$name, '[', 1:nc, ']')
  else if(z$label==z$name)
    z$label <- paste(colname, collapse=",")

  parms <- rep(NA, max(1, nc))
  if(length(xd)) for(i in 1:nc)
    parms[i] <- median(xd[,i], na.rm=TRUE)

  xd <- I(xd)
  attributes(xd) <- set.atr(xd, NULL, z, colname, "matrix", 10, parms,
                            rep(FALSE,nc))
  xd
}

## Polynomial expansion
pol <- function(...) {

  cal <- sys.call()
  xx <- list(...)
  z <- des.args(xx, TRUE, cal)
  x <- xx[[1]]
  if(! is.numeric(x)) {
    stop(paste(z$name,"is not numeric"))
  }
  poly.degree <- getOption('poly.degree', 2)
  if(! length(z$parms)) message('polynomial degree for pol defaulting to ',
                                poly.degree)
  else poly.degree <- z$parms

  if(poly.degree < 2){
    stop("order for polynomial must be 2,3,...")
  }

  xd <- matrix(1,nrow=length(x),ncol=poly.degree)
  nam <- z$name
  name <- character(poly.degree)
  name[1] <- nam
  xd[,1] <- x

  for(j in 2:poly.degree) {
    name[j] <- paste0(nam,"^",j)
    xd[,j] <- x^j
  }

  attributes(xd) <- set.atr(xd,x,z,name,"polynomial",2,poly.degree,
                            c(FALSE,rep(TRUE,poly.degree-1)))
  xd
}


## Linear spline expansion
lsp <- function(...) {

  cal <- sys.call()
  xx <- list(...)
  z <- des.args(xx, TRUE, cal)
  x <- xx[[1]]
  if(! is.numeric(x)) {
    stop(paste(z$name,"is not numeric"))
  }
  parms <- z$parms
  if(! length(parms) || any(is.na(parms)))  {
    stop("must specify knots for linear spline")
  }

  suffix <- NULL
  nam <- z$name
  lp <- length(parms)
  xd <- matrix(double(1),nrow=length(x),ncol=lp+1)
  name <- character(lp+1)
  xd[,1] <- x
  name[1] <- nam

  for(j in 1:lp) {
    suffix    <- paste0(suffix, "'")
    name[j+1] <- paste0(nam, suffix)
    xd[,j+1]  <- pmax(x - parms[j], 0)
  }

  attributes(xd) <- set.atr(xd,x,z,name,"lspline",3,parms,c(FALSE,rep(TRUE,lp)))
  xd
}

## Restricted cubic spline expansion
rcs <- function(...) {
  
  cal <- sys.call()
  xx  <- list(...)
  z   <- des.args(xx, TRUE, cal)
  x   <- xx[[1]]
  if(! is.numeric(x)) stop(paste(z$name, "is not numeric"))

  nknots <- getOption('nknots', 5)

  parms <- z$parms
  if(! length(parms)) {
    message('number of knots in rcs defaulting to ', nknots)
    parms <- nknots
    }

  if(length(parms)==1) {
    nknots <- parms
    knots <- NULL
    if(nknots == 0) {
      attributes(x) <- set.atr(x, x, z, z$name, "asis", 1, NULL, FALSE)
      return(x)
    }
  }
  else {
    nknots <- length(parms)
    knots <- parms
  }
  
  pc <- length(.Options$rcspc) && .Options$rcspc
  fractied <- .Options$fractied
  if(! length(fractied)) fractied <- 0.05
  
  if(! length(knots)) {
    xd <- rcspline.eval(x, nk=nknots, inclx=TRUE, pc=pc, fractied=fractied)
    knots <- attr(xd,"knots")
  }
  else xd <- rcspline.eval(x, knots=knots, inclx=TRUE, pc=pc, fractied=fractied)

  parms  <- knots
  nknots <- length(parms)
  nam    <- z$name
  primes <- paste(rep("'",nknots-1), collapse="")
  name   <- if(pc)
    paste0(nam, substring(primes, 1, 1:(nknots-1)))
  else c(nam, paste0(nam, substring(primes, 1, 1:(nknots-2))))

  if(pc) attr(parms, 'pcparms') <- attr(xd, 'pcparms')
  attributes(xd) <-
    set.atr(xd, x, z, name, "rcspline", 4, parms,
            if(pc) rep(TRUE, nknots-1) else c(FALSE,rep(TRUE,nknots-2)))
  xd
}

## Category variable
catg <- function(...) {
  cal <- sys.call()
  xx <- list(...)
  z <- des.args(xx, TRUE, cal)
  nam <- z$name
  y <- xx[[1]]
  parms <- z$parms

  if(! length(parms) & is.factor(y)) parms <- levels(y)

  if(! length(parms)) {
    if(is.character(y)) {
      parms <- sort(unique(y[y != "" & y != " "]))
    } else {
      parms <- as.character(sort(unique(y[! is.na(y)])))
    }
  }
  
  if(! is.factor(y)) {
    x <- factor(y, levels=parms)
  } else {
    x <- y
  }

  if((is.character(y) && any(y != "" & y != " " & is.na(x))) ||
     (is.numeric(y) & any(! is.na(y) & is.na(x)))) {
    stop(paste(nam,"has non-allowable values"))
  }

  if(all(is.na(x))) {
    stop(paste(nam,"has no non-missing observations"))
  }

  lp <- length(parms)
  if(lp < 2) stop(paste(nam,"has <2 category levels"))

  attributes(x) <- list(levels=parms,class=c("factor","rms"),
                        name=nam,label=z$label,assume="category",assume.code=5,
                        parms=parms,nonlinear=rep(FALSE,lp-1),
                        colnames=paste0(nam, "=", parms[-1]))
  x
}

## Scored expansion   parms=unique values
scored <- function(...) {

  cal <- sys.call()
  xx  <- list(...)
  z   <- des.args(xx, TRUE, cal)
  parms <- z$parms
  nam   <- z$name
  x <- xx[[1]]
  if(is.factor(x)) {
    levx <- as.numeric(levels(x))
    if(any(is.na(levx))) stop(paste("levels for", nam, "not numeric"))
    if(! length(parms)) parms <- levx

    ## .Options$warn <- -1   #suppress warning about NAs
    oldopt <- options('warn')
    options(warn=-1)
    on.exit(options(oldopt))
    x <- levx[x]
  }

  if(! is.numeric(x)) stop(paste(nam,"is not a numeric variable"))

  y <- sort(unique(x[! is.na(x)]))
  if(! length(parms)) parms <- y

  parms <- sort(parms)
  n.unique <- length(parms)
  if(n.unique < 3) {
    stop("scored specified with < 3 levels")
  }
  lp <- length(parms) - 1

  ## Form contrast matrix of the form linear | dummy | dummy ...

  xd <- matrix(double(1), nrow=length(y), ncol=lp)
  xd[,1] <- y
  name <- character(lp)
  name[1] <- nam
  i <- 1
  for(k in parms[3:length(parms)]) {
    i <- i+1
    name[i] <- paste0(nam, "=", k)
    xd[,i] <- y==k
  }

  dimnames(xd) <- list(NULL, name)

  x <- ordered(x)
  class(x) <- c("ordered","factor","rms")

  attributes(x) <- c(attributes(x),
                     list(name=nam,label=z$label,assume="scored",assume.code=7,
                          parms=parms,
                          nonlinear=c(FALSE,rep(TRUE,lp-1)), colnames=name,
                          contrasts=xd))
  x
}

# General transformations - allows discontinuities, special spline
# functions, etc.
gTrans <- function(...) {

  cal <- sys.call()
  xx  <- list(...)
  z <- des.args(xx, TRUE, cal)
  parms <- z$parms
  if(is.character(parms)) parms <- eval(parse(text=parms))
  nam   <- z$nam
  x <- xx[[1]]
  suffix <- ''
  nam  <- z$name
  xd   <- as.matrix(parms(x))
  nc   <- ncol(xd)
  name <- rep('', nc)
  if(length(colnames(xd))) name <- colnames(xd)
  nonlin <- rep(FALSE, nc)
  nonlin[attr(xd, 'nonlinear')] <- TRUE

  tex <- attr(xd, 'tex')
  if(length(tex)) tex <- deparse(tex)
  
  for(j in 1 : nc) {
    if(name[j] == '') name[j] <- paste0(nam, suffix)
    suffix  <- paste0(suffix, "'")
  }
  colnames(xd) <- name
  # model.matrix will put TRUE after a term name if logical
  # convert to 0/1
  if(is.logical(xd)) xd <- 1 * xd

  xd <- I(xd)
  # Store the function parms as character so environment won't
  # be carried along (makes serialized .rds and other files large)
  attributes(xd) <- set.atr(xd, x, z, name, "gTrans", 11,
                            deparse(parms), nonlin, tex)
  xd
}


## strat parms=value labels
strat <- function(...) {
  cal <- sys.call()
  xx <- list(...)
  y <- xx[[1]]
  z <- des.args(xx, TRUE, cal)
  parms <- z$parms
  if(! length(parms)) parms <- levels(y)
  if(! length(parms)) {
    if(is.character(y)) {
      parms <- sort(unique(y[y != "" & y != " "]))
    } else parms <- as.character(sort(unique(y[! is.na(y)])))
  }

  nam <- z$name
  if(! is.factor(y)) {
    x <- factor(y,levels=parms)
  } else x <- y

  if((is.character(y) & any(y != "" & y != " " & is.na(x))) ||
     (is.numeric(y) & any(! is.na(y) & is.na(x)))) {
    stop(paste(nam," has a non-allowable value"))
  }

  name <- nam
  attributes(x) <- list(levels=parms,class=c("factor","rms"),
                        name=nam, label=z$label, assume="strata", assume.code=8,
                        parms=parms, nonlinear=FALSE,
                        colnames=paste0(nam,"=", parms[-1]))
  x
}

## Function to subscript a variable, keeping attributes
## Is similar to [.smooth, but does not keep attribute NAs
"[.rms" <- function(x, ..., drop = FALSE) {
  ats <- attributes(x)
  ats$dimnames <- NULL
  ats$dim <- NULL
  ats$names <- NULL
  class(x) <- NULL
  y <- x[..., drop = drop]
  attributes(y) <- c(attributes(y), ats)
  y
}

## Function to get parms of factor in fit or design object "fit" with name
## given by second argument (without quotes)
gparms <- function(fit,...) {
  name <- as.character(sys.call())[3]
  atr <- fit$Design
  atr$parms[[name]]
}

## value.chk - if x=NA, returns list of possible values of factor i defined
##	in object f's attributes.  For continuous factors, returns n values
##	in default prediction range.  Use n=0 to return trio of effect
##	limits.  Use n < 0 to return pretty(plotting range, nint = - n).
##       If type.range="full" uses the full range instead of default plot rng.
## If x is not NA, checks that list to see that each value is allowable
##	for the factor type, and returns x
## Last argument is object returned from Getlim (see Design.Misc)
## First argument is Design list

value.chk <- function(f, i, x, n, limval, type.range="plot")
{
  as     <- f$assume.code[i]
  name   <- f$name[i]
  parms  <- f$parms[[name]]
  isna   <- length(x)==1 && is.na(x)
  values <- limval$values[[name]]
  charval <- length(values) && is.character(values)
  if(isna & as != 7) {
    if(! length(limval) || match(name, dimnames(limval$limits)[[2]], 0)==0 ||
       is.na(limval$limits["Adjust to",name]))
      stop(paste("variable",name,"does not have limits defined by datadist"))
    
    limits <- limval$limits[,name]
    lim    <- if(type.range=="full") limits[6:7] else limits[4:5]
  }

  if(as < 5 | as == 6 | as == 11) {
      if(isna) {
        if(! length(values)) {
          if(n==0) x <- limits[1:3]
          else {
            if(n>0) x <- seq(unclass(lim[1]), #handles chron
                             unclass(lim[2]),length=n)
            else x <- pretty(unclass(lim[1:2]), n=-n)
            class(x) <- class(lim)
          }
        } else x <- values
      } else {
        if(is.character(x) && ! charval)
          stop(paste("character value not allowed for variable",
                     name))   #Allow any numeric value
        if(charval) {
          j <- match(x, values, 0)
          if(any(j==0))
            stop(paste("illegal values for categorical variable:",
                       paste(x[j==0],collapse=" "),"\nPossible levels:",
                       paste(values,collapse=" ")))
        }	
      }
    } else if(as == 5 | as == 8) {
      if(isna) x <- parms
      else {
        j <- match(x, parms, 0)  #match converts x to char if needed
        if(any(j == 0))
          stop(paste("illegal levels for categorical variable:",
                     paste(x[j == 0], collapse=" "), "\nPossible levels:",
                     paste(parms, collapse=" ")))
        x
      }
    }
    else if(as==7) {
      if(isna) x <- parms
      else if(is.character(x))
        stop(paste("character value not allowed for",
                   "variable",name))
      else {
        j <- match(x, parms, 0)
        if(any(j==0)) {
          stop(paste("illegal levels for categorical variable:",
                     paste(x[j==0],collapse=" "),"\n","Possible levels:",
                     paste(parms,collapse=" ")))
        }
      }
    }
  
  invisible(x)
}

##ia.operator.s - restricted interaction operators for use with Design
##F. Harrell  8 Nov 91

##Set up proper attributes for a restricted interaction for a model
##such as y ~ rcs(x1) + rcs(x2) + x1 %ia% x2 or x1 %ia% rcs(x2)
##or rcs(x1) %ia% x2

"%ia%" <- function(x1, x2) {
  a1 <- attributes(x1)
  a2 <- attributes(x2)
  nam <- as.character(sys.call())[-1]

  redo <- function(x, nam) {
    if(! length(attr(x, "assume.code"))) {
      ## a variable being interacted appears without an rms
      ## fitting function around it
      x <- if(length(class(x)) && class(x)[1] == "ordered")
             scored(x, name=nam)
      else if(is.character(x) | is.factor(x)) catg(x, name=nam)
      else if(is.matrix(x)) matrx(x, name=nam)
      else asis(x, name=nam)
    }
    at <- attributes(x)
    ass <- at$assume.code
    nam <- at$name
    
    if(ass == 5) {
      colnames <- at$colnames
      len      <- length(at$parms) - 1
    } else if(ass == 8) {
      prm <- at$parms
      colnames <- paste0(nam, "=", prm[-1])
      len <- length(prm) - 1
    } else if(ass == 7) {
      prm <- at$parms
      colnames <- c(nam, paste0(nam, "=", prm[-(1 : 2)]))
      len <- length(prm) - 1
    } else {
      if(! length(ncol(x))) {
        len <- 1
        colnames <- nam
      } else {
        colnames <- dimnames(x)[[2]]
        len <- ncol(x)
      }
    }
    
    attr(x, "colnames") <- colnames
    attr(x, "len")      <- len
    if(ass == 8) attr(x, "nonlinear") <- rep(FALSE, len)
    x
  }

  x1  <- redo(x1, nam[1])
  x2  <- redo(x2, nam[2])
  
  a1  <- attributes(x1)
  a2  <- attributes(x2)
  n1  <- a1$colnames
  n2  <- a2$colnames
  nl1 <- a1$nonlinear
  nl2 <- a2$nonlinear
  as1 <- a1$assume.code
  as2 <- a2$assume.code

  lev1 <- length(levels(x1))
  lev2 <- length(levels(x2))

  ## Mark special if %ia% does not generate expanded term labels.  This
  ## occurs if both variables are as-is or if %ia% involved a variable
  ## that was categorical with
  ## 2 levels and did not involve a variable that was an expanded spline
  ## or polynomial.  Handles inconsistency in model.matrix whereby
  ## categorical %ia% plain variable generates a column name of the form
  ## categorical %ia% plain without "categorical=2nd level"
  iaspecial <- (as1 == 1 && as2 ==1) ||
                ((lev1 == 2 || lev2 == 2) &&
                (as1 %nin% 2 : 4 && as2 %nin% 2 : 4))

  l1 <- a1$len
  l2 <- a2$len
  if(any(nl1) & any(nl2)) nc <- l1 + l2 - 1
  else nc <- l1 * l2

  nr <- if(is.matrix(x1)) nrow(x1) else length(x1)

  x         <- matrix(double(1), nrow=nr, ncol=nc)
  name      <- character(nc)
  parms     <- matrix(integer(1), nrow=2, ncol=nc + 1)
  nonlinear <- logical(nc)

  k <- 0
  if(! is.factor(x1)) x1 <- as.matrix(x1)
  if(! is.factor(x2)) x2 <- as.matrix(x2)

  for(i in 1 : l1) {
    if(as1 == 5 | as1 == 8) x1i <- unclass(x1) == i + 1
    else x1i <- x1[, i]
    
    for(j in 1 : l2) {
      ## Remove doubly nonlinear terms
      if(nl1[i] & nl2[j]) break
      
      k <- k + 1
      if(as2 == 5 | as2 == 8) x2j <- unclass(x2) == j + 1
      else x2j <- x2[, j]
      
      x[,k]          <- x1i * x2j
      name[k]        <- paste(n1[i], "*", n2[j])
      parms[, k + 1] <- c(nl1[i], nl2[j])
      nonlinear[k]   <- nl1[i] | nl2[j]
    }
  }
  
  dimnames(x) <- list(NULL, name)
  attr(x, "ia") <- c(a1$name, a2$name)
  attr(x, "parms") <- parms
  attr(x, "nonlinear") <- nonlinear
  attr(x, "assume.code") <- 9
  attr(x, "name") <- paste(a1$name, "*", a2$name)
  attr(x, "label") <- attr(x, "name")
  attr(x, "iaspecial") <- iaspecial
  attr(x, "colnames") <- name
  attr(x, "class") <- "rms"
  x
}


## Thanks to Terry Therneau for code for the following

makepredictcall.rms <- function(var, call) {
  # rms transformation functions using parms information/argument
  funs <- c('rcs', 'pol', 'lsp', 'catg', 'scored', 'strat', 'gTrans')
  for(f in funs) {
    if(as.character(call)[1L] == f ||
      (is.call(call) && identical(eval(call[[1L]]), get(f)))) {
      call <- call[1L:2L]
      call["parms"] <- attributes(var)["parms"]
      break
      }
    }
  call
}

Try the rms package in your browser

Any scripts or data that you put into this service are public.

rms documentation built on Sept. 11, 2024, 7:51 p.m.