Description Usage Arguments Details Value References See Also Examples
This function computes the Epigraphic Index (EI) of elements of a univariate functional dataset.
1 2 3 4 5 6 7 |
Data |
either an |
Given a univariate functional dataset, X_1(t), X_2(t), …, X_N(t), defined over a compact interval I=[a,b], this function computes the EI, i.e.:
EI( X(t) ) = \frac{1}{N} ∑_{i=1}^N I( G( X_i(t) ) \subset epi( X(t) ) ) = \frac{1}{N} ∑_{i=1}^N I( X_i(t) ≥q X(t), \ \ \forall t \in I),
where G(X_i(t)) indicates the graph of X_i(t), epi( X(t)) indicates the epigraph of X(t).
The function returns a vector containing the values of EI for each
element of the functional dataset provided in Data
.
Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional data, Computational Statistics and Data Analysis, 55, 1679-1695.
Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram, Biostatistics, 15(4), 603-619.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.