Modified Half-Region Depth for univariate functional data

Share:

Description

This function computes the Modified Half-Region Depth (MHRD) of elements of a univariate functional dataset.

Usage

1
2
3
4
5
6
7
MHRD(Data)

## S3 method for class 'fData'
MHRD(Data)

## Default S3 method:
MHRD(Data)

Arguments

Data

either an fData object or a matrix-like dataset of functional data (e.g. fData$values), with observations as rows and measurements over grid points as columns.

Details

Given a univariate functional dataset, X_1(t), X_2(t), …, X_N(t), defined over a compact interval I=[a,b], this function computes the MHRD of its elements, i.e.:

MHRD(X(t)) = \min( MEI( X(t) ), MHI(X(t)) ),

where MEI(X(t)) indicates the Modified Epigraph Index (MEI) of X(t) with respect to the dataset, and MHI(X(t)) indicates the Modified Hypograph Index of X(t) with respect to the dataset.

Value

The function returns a vector containing the values of MHRD for each element of the functional dataset provided in Data.

References

Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional data, Computational Statistics and Data Analysis, 55, 1679-1695.

Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and visualization for functional data: the outliergram, Biostatistics, 15(4), 603-619.

See Also

HRD, MEI, MHI

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
N = 20
P = 1e2

grid = seq( 0, 1, length.out = P )

C = exp_cov_function( grid, alpha = 0.2, beta = 0.3 )

Data = generate_gauss_fdata( N,
                             centerline = sin( 2 * pi * grid ),
                             C )
fD = fData( grid, Data )

MHRD( fD )

MHRD( Data )

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.