Description Usage Arguments Details Value References See Also Examples
View source: R/multivariate_depths.R
These functions compute the Band Depth (BD) and Modified Band Depth (MBD) of elements of a multivariate functional dataset.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | multiMBD(Data, weights = "uniform", manage_ties = FALSE)
## S3 method for class 'mfData'
multiMBD(Data, weights = "uniform", manage_ties = FALSE)
## Default S3 method:
multiMBD(Data, weights = "uniform", manage_ties = FALSE)
multiBD(Data, weights = "uniform")
## S3 method for class 'mfData'
multiBD(Data, weights = "uniform")
## Default S3 method:
multiBD(Data, weights = "uniform")
|
Data |
specifies the the multivariate functional dataset.
It is either an object of class |
weights |
either a set of weights (of the same length of |
manage_ties |
a logical flag specifying whether the check for ties and
the relative treatment is to be carried out while computing the MBDs in each
dimension. It is directly passed to |
Given a multivariate functional dataset composed of N elements with L components each, \mathbf{X_1} =( X^1_1(t), X^2_1(t), …, X^L_1(t)), and a set of L non-negative weights,
w_1, w_2, …, w_L, \qquad ∑_{i=1}^L w_i = 1,
these functions compute the BD and MBD of each element of the functional dataset, namely:
BD( \mathbf{X_j} ) = ∑_{i=1}^{L} w_i BD( X^i_j ), \quad \forall j = 1, … N.
MBD( \mathbf{X_j} ) = ∑_{i=1}^{L} w_i MBD( X^i_j ), \quad \forall j = 1, … N.
The function returns a vector containing the depths of each element of the multivariate functional dataset.
Ieva, F. and Paganoni, A. M. (2013). Depth measures for multivariate functional data, Communications in Statistics: Theory and Methods, 41, 1265-1276.
Tarabelloni, N., Ieva, F., Biasi, R. and Paganoni, A. M. (2015). Use of Depth Measure for Multivariate Functional Data in Disease Prediction: An Application to Electrocardiograph Signals, International Journal of Biostatistics, 11.2, 189-201.
MBD
, BD
, toListOfValues
,
mfData
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | N = 20
P = 1e3
grid = seq( 0, 10, length.out = P )
# Generating an exponential covariance function to be used to simulate gaussian
# functional data
Cov = exp_cov_function( grid, alpha = 0.2, beta = 0.8 )
# First component of the multivariate guassian functional dataset
Data_1 = generate_gauss_fdata( N, centerline = rep( 0, P ), Cov = Cov )
# First component of the multivariate guassian functional dataset
Data_2 = generate_gauss_fdata( N, centerline = rep( 0, P ), Cov = Cov )
mfD = mfData( grid, list( Data_1, Data_2 ) )
multiBD( mfD, weights = 'uniform' )
multiMBD( mfD, weights = 'uniform', manage_ties = TRUE )
multiBD( mfD, weights = c( 1/3, 2/3 ))
multiMBD( mfD, weights = c( 1/3, 2/3 ), manage_ties = FALSE )
multiBD( list( Data_1, Data_2 ), weights = 'uniform')
multiMBD( list( Data_1, Data_2 ), weights = 'uniform', manage_ties = TRUE )
multiBD( list( Data_1, Data_2 ), weights = c( 1/3, 2/3 ))
multiMBD( list( Data_1, Data_2 ), weights = c( 1/3, 2/3 ), manage_ties = FALSE )
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.