BD_relative: Relative Band Depth of functions in a univariate functional...

Description Usage Arguments Details Value See Also Examples

View source: R/band_depths.R

Description

This function computes Band Depth (BD) of elements of a univariate functional dataset with respect to another univariate functional dataset.

Usage

1
2
3
4
5
6
7
BD_relative(Data_target, Data_reference)

## S3 method for class 'fData'
BD_relative(Data_target, Data_reference)

## Default S3 method:
BD_relative(Data_target, Data_reference)

Arguments

Data_target

is the univariate functional dataset, provided either as a fData object or in matrix form (N observations as rows and P measurements as columns), whose BD have to be computed with respect to the reference dataset.

Data_reference

is the dataset, provided either as a fData object or in matrix form (N observations as rows and P measurements as columns), containing the reference univariate functional data that must be used to compute the band depths of elements in Data_target. If Data_target is fData, it must be of class fData

Details

Given a univariate functional dataset of elements X_1(t), X_2(t), …, X_N(t), and another univariate functional dataset of elements Y_1(t), Y_2(t) …, Y_M(t), this function computes the BD of elements of the former with respect to elements of the latter, i.e.:

BD( X_i( t ) ) = {M \choose 2 }^{-1} ∑_{1 ≤q i_1 < i_2 ≤q M} I( G(X_i) \subset B( Y_{i_1}, Y_{i_2} ) ), \quad \forall i = 1, …, N,

where G(X_i) is the graphic of X_i(t) and B(Y_{i_1},Y_{i_2}) is the envelope of Y_{i_1}(t) and Y_{i_2}(t).

Value

The function returns a vector containing the BD of elements in Data_target with respect to elements in Data_reference.

See Also

BD, MBD, MBD_relative, fData

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
grid = seq( 0, 1, length.out = 1e2 )

Data_ref = matrix( c( 0  + sin( 2 * pi * grid ),
                      1  + sin( 2 * pi * grid ),
                      -1 + sin( 2 * pi * grid ) ),
                   nrow = 3, ncol = length( grid ), byrow = TRUE )

Data_test_1 = matrix( c( 0.6 + sin( 2 * pi * grid ) ),
                      nrow = 1, ncol = length( grid ), byrow = TRUE )

Data_test_2 = matrix( c( 0.6 + sin( 2 * pi * grid ) ),
                      nrow = length( grid ), ncol = 1, byrow = TRUE )

Data_test_3 = 0.6 + sin( 2 * pi * grid )

Data_test_4 = array( 0.6 + sin( 2 * pi * grid ), dim = length( grid ) )

Data_test_5 = array( 0.6 + sin( 2 * pi * grid ), dim = c( 1, length( grid ) ) )

Data_test_6 = array( 0.6 + sin( 2 * pi * grid ), dim = c( length( grid ), 1 ) )

Data_test_7 = matrix( c( 0.5  + sin( 2 * pi * grid ),
                         -0.5 + sin( 2 * pi * grid ),
                         1.1 + sin( 2 * pi * grid ) ),
                      nrow = 3, ncol = length( grid ), byrow = TRUE )

fD_ref = fData( grid, Data_ref )
fD_test_1 = fData( grid, Data_test_1 )
fD_test_2 = fData( grid, Data_test_2 )
fD_test_3 = fData( grid, Data_test_3 )
fD_test_4 = fData( grid, Data_test_4 )
fD_test_5 = fData( grid, Data_test_5 )
fD_test_6 = fData( grid, Data_test_6 )
fD_test_7 = fData( grid, Data_test_7 )

BD_relative( fD_test_1, fD_ref )
BD_relative( Data_test_1, Data_ref )

BD_relative( fD_test_2, fD_ref )
BD_relative( Data_test_2, Data_ref )

BD_relative( fD_test_3, fD_ref )
BD_relative( Data_test_3, Data_ref )

BD_relative( fD_test_4, fD_ref )
BD_relative( Data_test_4, Data_ref )

BD_relative( fD_test_5, fD_ref )
BD_relative( Data_test_5, Data_ref )

BD_relative( fD_test_6, fD_ref )
BD_relative( Data_test_6, Data_ref )

BD_relative( fD_test_7, fD_ref )
BD_relative( Data_test_7, Data_ref )

roahd documentation built on Nov. 4, 2021, 1:07 a.m.