Description Usage Arguments Details Value References See Also Examples
This function computes the Modified Band Depth (MBD) of elements of a functional dataset.
1 2 3 4 5 6 7 |
Data |
either a |
manage_ties |
a logical flag specifying whether a check for ties and
relative treatment must be carried out or not (default is |
Given a univariate functional dataset, X_1(t), X_2(t), …, X_N(t), defined over a compact interval I= [a,b], this function computes the sample MBD of each element with respect to the other elements of the dataset, i.e.:
MBD( X( t ) ) = {N \choose 2 }^{-1} ∑_{1 ≤q i_1 < i_2 ≤q N} \tilde{λ}\big( {t : \min( X_{i_1}(t), X_{i_2}(t) ) ≤q X(t) ≤q \max( X_{i_1}(t), X_{i_2}(t) ) } \big),
where \tilde{λ}(\cdot) is the normalized Lebesgue measure over I=[a,b], that is \tilde{λ(A)} = λ( A ) / ( b - a ).
See the References section for more details.
The function returns a vector containing the values of MBD for the given dataset.
Lopez-Pintado, S. and Romo, J. (2009). On the Concept of Depth for Functional Data, Journal of the American Statistical Association, 104, 718-734.
Lopez-Pintado, S. and Romo. J. (2007). Depth-based inference for functional data, Computational Statistics & Data Analysis 51, 4957-4968.
BD
, MBD_relative
,
BD_relative
, fData
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | grid = seq( 0, 1, length.out = 1e2 )
D = matrix( c( 1 + sin( 2 * pi * grid ),
0 + sin( 4 * pi * grid ),
1 - sin( pi * ( grid - 0.2 ) ),
0.1 + cos( 2 * pi * grid ),
0.5 + sin( 3 * pi + grid ),
-2 + sin( pi * grid ) ),
nrow = 6, ncol = length( grid ), byrow = TRUE )
fD = fData( grid, D )
MBD( fD )
MBD( D )
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.