Description Usage Arguments Value References Examples
This function plots the three 'DepthGram' representations from the output of
the depthgram
function.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
x |
An object of class |
limits |
A boolean specifying whether the empirical limits for outlier
detection should be drawn. Defaults to |
ids |
A character vector specifying labels for individual observations.
Defaults to |
print |
A boolean specifying whether the graphical output should be
optimized for printed version. Defaults to |
plot_title |
A character string specifying the main title for the plot.
Defaults to |
shorten |
A boolean specifying whether labels must be shorten to 15
characters. Defaults to |
col |
Color palette used for the plot. Defaults to |
pch |
Point shape. See |
sp |
Point size. See |
st |
Label size. See |
sa |
Axis title sizes. See |
text_labels |
A character vector specifying the labels for the
individuals. It is overridden if |
... |
Other arguments to be passed to the base |
A list with the following items:
p
: list with all the interactive (plotly) depthGram plots;
out
: outliers detected;
colors
: used colors for plotting.
Aleman-Gomez, Y., Arribas-Gil, A., Desco, M. Elias-Fernandez, A., and Romo, J. (2021). "Depthgram: Visualizing Outliers in High Dimensional Functional Data with application to Task fMRI data exploration".
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | N <- 50
P <- 50
grid <- seq(0, 1, length.out = P)
Cov <- exp_cov_function(grid, alpha = 0.3, beta = 0.4)
Data <- list()
Data[[1]] <- generate_gauss_fdata(
N,
centerline = sin(2 * pi * grid),
Cov = Cov
)
Data[[2]] <- generate_gauss_fdata(
N,
centerline = sin(2 * pi * grid),
Cov = Cov
)
names <- paste0("id_", 1:nrow(Data[[1]]))
DG <- depthgram(Data, marginal_outliers = TRUE, ids = names)
plot(DG)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.