Nothing
#' @title relative difference between covariance matrices
#' @name rdcm
#' @description The sample covariance matrices are computed from compositions expressed in the same isometric logratio coordinates.
#' @param x matrix or data frame
#' @param y matrix or data frame of the same size as x.
#' @return the error measures value
#' @author Matthias Templ
#' @references Hron, K. and Templ, M. and Filzmoser, P. (2010) Imputation of
#' missing values for compositional data using classical and robust methods
#' \emph{Computational Statistics and Data Analysis}, 54 (12),
#' 3095-3107.
#'
#' Templ, M. and Hron, K. and Filzmoser and Gardlo, A. (2016).
#' Imputation of rounded zeros for high-dimensional compositional data.
#' \emph{Chemometrics and Intelligent Laboratory Systems}, 155, 183-190.
#'
#' @seealso \code{\link{rdcm}}
#' @keywords manip
#' @export
#' @details The difference in covariance structure is based on the Euclidean distance between both covariance estimations.
#' @examples
#' data(expenditures)
#' x <- expenditures
#' x[1,3] <- NA
#' xi <- impKNNa(x)$xImp
#' rdcm(expenditures, xi)
rdcm <- function(x, y){
## from package matrixcalc, CRAN version 1.0.3
fn <-
function (x)
{
return(en(x, 2))
}
## from package matrixcalc, CRAN version 1.0.3
en <-
function (x, p)
{
if (!is.numeric(x)) {
stop("argument x is not numeric")
}
if (is.matrix(x)) {
Xmat <- x
}
else {
if (is.vector(x)) {
Xmat <- matrix(x, nrow = length(x), ncol = 1)
}
else {
stop("argument x is neither vector nor matrix")
}
}
if (p == 0) {
stop("exponent p is zero")
}
return((sum(abs(Xmat)^p))^(1/p))
}
# new code
ocov <- cov(pivotCoord(x))
rcov <- cov(pivotCoord(y))
return(fn(ocov-rcov)/fn(ocov))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.