View source: R/huberquantile_if.R
huberquantile_if | R Documentation |
The function huberquantile_if computes the Huber quantile identification
function at a specific level p
and parameters a
and b
, when
y
materialises and x
is the predictive Huber functional at level
p
.
The Huber quantile identification function is defined by eq. (3.5) in Taggart (2022).
huberquantile_if(x, y, p, a, b)
x |
Predictive Huber functional (prediction) at level |
y |
Realisation (true value) of process. It can be a vector of length
|
p |
It can be a vector of length |
a |
It can be a vector of length |
b |
It can be a vector of length |
The Huber quantile identification function is defined by:
V(x, y, a) := |\textbf{1} \lbrace x \geq y \rbrace - p|
\kappa_{a,b}(x - y)
where \kappa_{a,b}(t)
is the capping function defined by:
\kappa_{a,b}(t) := \max \lbrace \min \lbrace t,b \rbrace, -a \rbrace
Domain of function:
x \in \mathbb{R}
y \in \mathbb{R}
0 < p < 1
a > 0
b > 0
Vector of values of the Huber quantile identification function.
For the definition of Huber quantile, see Taggart (2022).
The Huber quantile identification function is a strict
\mathbb{F}
-identification function for the Huber quantile functional
(Taggart 2022).
\mathbb{F}
is the family of probability distributions F
for which
for which \textnormal{E}_F[Y]
exists and is finite (Taggart 2022).
Taggart RJ (2022) Point forecasting and forecast evaluation with generalized Huber loss. Electronic Journal of Statistics 16:201–231. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/21-EJS1957")}.
# Compute the Huber quantile identification function.
set.seed(12345)
n <- 10
df <- data.frame(
x = runif(n, -2, 2),
y = runif(n, -2, 2),
p = runif(n, 0, 1),
a = runif(n, 0, 1),
b = runif(n, 0, 1)
)
df$huberquantile_if <- huberquantile_if(x = df$x, y = df$y, p = df$p, a = df$a,
b = df$b)
print(df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.