mv_sf | R Documentation |
The function mv_sf computes the mean - variance scoring function, when y
materialises, x_1
is the predictive mean and x_2
is the predictive
variance.
The mean - variance scoring function is defined by eq. (3.11) in Fissler and Ziegel (2019).
mv_sf(x1, x2, y)
x1 |
Predictive mean (prediction). It can be a vector of length |
x2 |
Predictive variance (prediction). It can be a vector of length |
y |
Realisation (true value) of process. It can be a vector of length
|
The mean - variance scoring function is defined by:
S(x_1, x_2, y) := x_2^{-2} (x_1^2 - 2 x_2 - 2 x_1 y + y^2)
Domain of function:
x_1 \in \mathbb{R}
x_2 > 0
y \in \mathbb{R}
Vector of mean - variance losses.
The mean functional is the mean \textnormal{E}_F[Y]
of the probability
distribution F
of y
(Gneiting 2011).
The variance functional is the variance
\textnormal{Var}_F[Y] := \textnormal{E}_F[Y^2] - (\textnormal{E}_F[Y])^{2}
of the probability distribution F
of y
(Gneiting 2011)
The mean - variance scoring function is negatively oriented (i.e. the smaller, the better).
The mean - variance scoring function is strictly consistent for the pair (mean, variance) functional (Osband 1985, p.9; Gneiting 2011; Fissler and Ziegel 2019).
Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Journal of Statistics 13(1):1166–1211. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/19-EJS1552")}.
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jasa.2011.r10138")}.
Osband KH (1985) Providing Incentives for Better Cost Forecasting. PhD thesis, University of California, Berkeley. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.5281/zenodo.4355667")}.
# Compute the mean - variance scoring function.
df <- data.frame(
y = rep(x = 0, times = 6),
x1 = c(2, 2, -2, -2, 0, 0),
x2 = c(1, 2, 1, 2, 1, 2)
)
df$mv_penalty <- mv_sf(x1 = df$x1, x2 = df$x2, y = df$y)
print(df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.