View source: R/obsweighted_sf.R
obsweighted_sf | R Documentation |
The function obsweighted_sf computes the observation-weighted scoring function
when y
materialises and x
is the predictive
\dfrac{\textnormal{E}_F [Y^{2}]}{\textnormal{E}_F [Y]}
functional.
The observation-weighted scoring function is defined in p. 752 in Gneiting (2011).
obsweighted_sf(x, y)
x |
Predictive |
y |
Realisation (true value) of process. It can be a vector of length
|
The observation-weighted scoring function is defined by:
S(x, y) := y (x - y)^{2}
Domain of function:
x > 0
y > 0
Range of function:
S(x, y) \geq 0, \forall x, y > 0
Vector of observation-weighted errors.
For details on the observation-weighted scoring function, see Gneiting (2011).
The observation-weighted scoring function is negatively oriented (i.e. the smaller, the better).
The observation-weighted scoring function is strictly consistent for the
\dfrac{\textnormal{E}_F [Y^{2}]}{\textnormal{E}_F [Y]}
functional.
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jasa.2011.r10138")}.
# Compute the observation-weighted scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x = 1:3
)
df$squared_relative_error <- obsweighted_sf(x = df$x, y = df$y)
print(df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.