nmoment_if | R Documentation |
n
-th moment identification function
The function nmoment_if computes the n
-th moment identification function,
when y
materialises and x
is the predictive n
-th moment.
The expectile identification function is defined in Table 9 in Gneiting (2011)
by setting r(t) = t^n
and s(t) = 1
.
nmoment_if(x, y, n)
x |
Predictive |
y |
Realisation (true value) of process. It can be a vector of length
|
n |
|
The n
-th moment identification function is defined by:
V(x, y, n) := x - y^n
Domain of function:
x \in \mathbb{R}
y \in \mathbb{R}
n \in \mathbb{N}
Vector of values of the n
-th moment identification function.
The n
-th moment functional is the expectation \textnormal{E}_F[Y^n]
of the probability distribution F
of y
.
The n
-th moment identification function is a strict
\mathbb{F}
-identification function for the n
-th moment functional
(Gneiting 2011; Fissler and Ziegel 2016).
\mathbb{F}
is the family of probability distributions F
for which
\textnormal{E}_F[Y^n]
exists and is finite (Gneiting 2011; Fissler and
Ziegel 2016).
Fissler T, Ziegel JF (2016) Higher order elicitability and Osband's principle. The Annals of Statistics 44(4):1680–1707. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/16-AOS1439")}.
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jasa.2011.r10138")}.
# Compute the n-th moment scoring function.
df <- data.frame(
y = rep(x = 2, times = 6),
x = c(1, 2, 3, 1, 2, 3),
n = c(2, 2, 2, 3, 3, 3)
)
df$nmoment_if <- nmoment_if(x = df$x, y = df$y, n = df$n)
print(df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.