mv_if | R Documentation |
The function mv_if computes the mean - variance identification function, when
y
materialises, x_1
is the predictive mean and x_2
is the
predictive variance.
The mean - variance identification function is defined in proposition (3.11) in Fissler and Ziegel (2019).
mv_if(x1, x2, y)
x1 |
Predictive mean (prediction). It can be a vector of length |
x2 |
Predictive variance (prediction). It can be a vector of length |
y |
Realisation (true value) of process. It can be a vector of length
|
The mean - variance identification function is defined by:
V(x_1, x_2, y) := (x_1 - y, x_2 + x_1^2 - y^2)
Domain of function:
x_1 \in \mathbb{R}
x_2 > 0
y \in \mathbb{R}
Matrix of mean - variance values of the identification function.
The mean functional is the mean \textnormal{E}_F[Y]
of the probability
distribution F
of y
(Gneiting 2011).
The variance functional is the variance
\textnormal{Var}_F[Y] := \textnormal{E}_F[Y^2] - (\textnormal{E}_F[Y])^{2}
of the probability distribution F
of y
(Gneiting 2011)
The mean - variance identification function is a strict
\mathbb{F}
-identification function for the pair (mean, variance)
functional (Gneiting 2011; Fissler and Ziegel 2019; Dimitriadis et al. 2024).
\mathbb{F}
is the family of probability distributions F
for which
\textnormal{E}_F[Y]
and \textnormal{E}_F[Y^2]
exist and are finite
(Gneiting 2011; Fissler and Ziegel 2019; Dimitriadis et al. 2024).
Dimitriadis T, Fissler T, Ziegel JF (2024) Osband's principle for identification functions. Statistical Papers 65:1125–1132. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s00362-023-01428-x")}.
Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Journal of Statistics 13(1):1166–1211. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/19-EJS1552")}.
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jasa.2011.r10138")}.
# Compute the mean - variance identification function.
df <- data.frame(
y = rep(x = 0, times = 6),
x1 = c(2, 2, -2, -2, 0, 0),
x2 = c(1, 2, 1, 2, 1, 2)
)
v <- as.data.frame(mv_if(x1 = df$x1, x2 = df$x2, y = df$y))
print(cbind(df, v))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.