mre | R Documentation |
The function mre computes the mean relative error when \textbf{\textit{y}}
materialises and \textbf{\textit{x}}
is the prediction.
Mean relative error is a realised score corresponding to the relative error scoring function relerr_sf.
mre(x, y)
x |
Prediction. It can be a vector of length |
y |
Realisation (true value) of process. It can be a vector of length
|
The mean relative error is defined by:
S(\textbf{\textit{x}}, \textbf{\textit{y}}) := (1/n)
\sum_{i = 1}^{n} L(x_i, y_i)
where
\textbf{\textit{x}} = (x_1, ..., x_n)^\mathsf{T}
\textbf{\textit{y}} = (y_1, ..., y_n)^\mathsf{T}
and
L(x, y) := |(x - y)/x|
Domain of function:
\textbf{\textit{x}} > \textbf{0}
\textbf{\textit{y}} > \textbf{0}
where
\textbf{0} = (0, ..., 0)^\mathsf{T}
is the zero vector of length n
and the symbol >
indicates pairwise
inequality.
Range of function:
S(\textbf{\textit{x}}, \textbf{\textit{y}}) \geq 0,
\forall \textbf{\textit{x}}, \textbf{\textit{y}} > \textbf{0}
Value of the mean relative error.
For details on the relative error scoring function, see relerr_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).
The mean relative error is the realised (average) score corresponding to the relative error scoring function.
Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Journal of Statistics 13(1):1166–1211. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/19-EJS1552")}.
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jasa.2011.r10138")}.
# Compute the mean relative error.
set.seed(12345)
x <- 0.5
y <- rlnorm(n = 100, mean = 0, sdlog = 1)
print(mre(x = x, y = y))
print(mre(x = rep(x = x, times = 100), y = y))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.