quantile_if | R Documentation |
The function quantile_if computes the quantile identification function at a
specific level p
, when y
materialises and x
is the predictive
quantile at level p
.
The quantile identification function is defined in Table 9 in Gneiting (2011).
quantile_if(x, y, p)
x |
Predictive quantile (prediction) at level |
y |
Realisation (true value) of process. It can be a vector of length
|
p |
It can be a vector of length |
The quantile identification function is defined by:
V(x, y, p) := \textbf{1} \lbrace x \geq y \rbrace - p
Domain of function:
x \in \mathbb{R}
y \in \mathbb{R}
0 < p < 1
Range of function:
V(x, y, p) \in (-1, 1)
Vector of values of the quantile identification function.
For the definition of quantiles, see Koenker and Bassett Jr (1978).
The quantile identification function is a strict
\mathbb{F}_p
-identification function for the p
-quantile functional
(Gneiting 2011; Fissler and Ziegel 2016; Dimitriadis et al. 2024).
\mathbb{F}_p
is the family of probability distributions F
for which
there exists an y
with F(y) = p
(Gneiting 2011; Fissler and Ziegel
2016; Dimitriadis et al. 2024).
Dimitriadis T, Fissler T, Ziegel JF (2024) Osband's principle for identification functions. Statistical Papers 65:1125–1132. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s00362-023-01428-x")}.
Fissler T, Ziegel JF (2016) Higher order elicitability and Osband's principle. The Annals of Statistics 44(4):1680–1707. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/16-AOS1439")}.
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jasa.2011.r10138")}.
Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46(1):33–50. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/1913643")}.
# Compute the quantile identification function.
df <- data.frame(
y = rep(x = 0, times = 6),
x = c(2, 2, -2, -2, 0, 0),
p = rep(x = c(0.05, 0.95), times = 3)
)
df$quantile_if <- quantile_if(x = df$x, y = df$y, p = df$p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.