msre | R Documentation |
The function msre computes the mean squared relative error when
\textbf{\textit{y}}
materialises and \textbf{\textit{x}}
is the
prediction.
Mean squared relative error is a realised score corresponding to the squared relative error scoring function srelerr_sf.
msre(x, y)
x |
Prediction. It can be a vector of length |
y |
Realisation (true value) of process. It can be a vector of length
|
The mean squared relative error is defined by:
S(\textbf{\textit{x}}, \textbf{\textit{y}}) := (1/n)
\sum_{i = 1}^{n} L(x_i, y_i)
where
\textbf{\textit{x}} = (x_1, ..., x_n)^\mathsf{T}
\textbf{\textit{y}} = (y_1, ..., y_n)^\mathsf{T}
and
L(x, y) := ((x - y)/x)^{2}
Domain of function:
\textbf{\textit{x}} > \textbf{0}
\textbf{\textit{y}} > \textbf{0}
where
\textbf{0} = (0, ..., 0)^\mathsf{T}
is the zero vector of length n
and the symbol >
indicates pairwise
inequality.
Range of function:
S(\textbf{\textit{x}}, \textbf{\textit{y}}) \geq 0,
\forall \textbf{\textit{x}}, \textbf{\textit{y}} > \textbf{0}
Value of the mean squared relative error.
For details on the squared relative error scoring function, see srelerr_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).
The mean squared relative error is the realised (average) score corresponding to the squared relative error scoring function.
Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Journal of Statistics 13(1):1166–1211. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/19-EJS1552")}.
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jasa.2011.r10138")}.
# Compute the mean squared relative error.
set.seed(12345)
x <- 0.5
y <- rlnorm(n = 100, mean = 0, sdlog = 1)
print(msre(x = x, y = y))
print(msre(x = rep(x = x, times = 100), y = y))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.