mae: Mean absolute error (MAE)

View source: R/mae.R

maeR Documentation

Mean absolute error (MAE)

Description

The function mae computes the mean absolute error when \textbf{\textit{y}} materialises and \textbf{\textit{x}} is the prediction.

Mean absolute error is a realised score corresponding to the absolute error scoring function aerr_sf.

Usage

mae(x, y)

Arguments

x

Prediction. It can be a vector of length n (must have the same length as \textbf{\textit{y}}).

y

Realisation (true value) of process. It can be a vector of length n (must have the same length as \textbf{\textit{x}}).

Details

The mean absolute error is defined by:

S(\textbf{\textit{x}}, \textbf{\textit{y}}) := (1/n) \sum_{i = 1}^{n} L(x_i, y_i)

where

\textbf{\textit{x}} = (x_1, ..., x_n)^\mathsf{T}

\textbf{\textit{y}} = (y_1, ..., y_n)^\mathsf{T}

and

L(x, y) := |x - y|

Domain of function:

\textbf{\textit{x}} \in \mathbb{R}^n

\textbf{\textit{y}} \in \mathbb{R}^n

Range of function:

S(\textbf{\textit{x}}, \textbf{\textit{y}}) \geq 0, \forall \textbf{\textit{x}}, \textbf{\textit{y}} \in \mathbb{R}^n

Value

Value of the mean absolute error.

Note

For details on the absolute error scoring function, see aerr_sf.

The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The mean absolute error is the realised (average) score corresponding to the absolute error scoring function.

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Journal of Statistics 13(1):1166–1211. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/19-EJS1552")}.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jasa.2011.r10138")}.

Examples

# Compute the mean absolute error.

set.seed(12345)

x <- 0

y <- rnorm(n = 100, mean = 0, sd = 1)

print(mae(x = x, y = y))

print(mae(x = rep(x = x, times = 100), y = y))

scoringfunctions documentation built on April 4, 2025, 12:28 a.m.