mae | R Documentation |
The function mae computes the mean absolute error when \textbf{\textit{y}}
materialises and \textbf{\textit{x}}
is the prediction.
Mean absolute error is a realised score corresponding to the absolute error scoring function aerr_sf.
mae(x, y)
x |
Prediction. It can be a vector of length |
y |
Realisation (true value) of process. It can be a vector of length
|
The mean absolute error is defined by:
S(\textbf{\textit{x}}, \textbf{\textit{y}}) := (1/n)
\sum_{i = 1}^{n} L(x_i, y_i)
where
\textbf{\textit{x}} = (x_1, ..., x_n)^\mathsf{T}
\textbf{\textit{y}} = (y_1, ..., y_n)^\mathsf{T}
and
L(x, y) := |x - y|
Domain of function:
\textbf{\textit{x}} \in \mathbb{R}^n
\textbf{\textit{y}} \in \mathbb{R}^n
Range of function:
S(\textbf{\textit{x}}, \textbf{\textit{y}}) \geq 0,
\forall \textbf{\textit{x}}, \textbf{\textit{y}} \in \mathbb{R}^n
Value of the mean absolute error.
For details on the absolute error scoring function, see aerr_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).
The mean absolute error is the realised (average) score corresponding to the absolute error scoring function.
Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Journal of Statistics 13(1):1166–1211. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/19-EJS1552")}.
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746–762. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1198/jasa.2011.r10138")}.
# Compute the mean absolute error.
set.seed(12345)
x <- 0
y <- rnorm(n = 100, mean = 0, sd = 1)
print(mae(x = x, y = y))
print(mae(x = rep(x = x, times = 100), y = y))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.