Nothing
#' @export
data_plot.n_factors <- function(x, data = NULL, type = "bar", ...) {
s1 <- summary(x)
if ("n_Factors" %in% names(x)) {
variable <- "n_Factors"
lab <- "factors"
} else {
variable <- "n_Clusters"
lab <- "clusters"
}
s2 <- data.frame(n_Methods = rep(0, max(x[[variable]])))
if (type == "line") {
s1[[variable]] <- as.factor(s1[[variable]])
s2[[variable]] <- factor(1:max(x[[variable]]))
} else {
s2[[variable]] <- 1:max(x[[variable]])
}
if ("Variance_Cumulative" %in% names(s1)) {
s2$Variance_Cumulative <- NA
}
dataplot <- rbind(s1, s2[!s2[[variable]] %in% s1[[variable]], ])
if ("Variance_Explained" %in% names(attributes(x))) {
dataplot$Variance_Cumulative <- NULL # Remove column and re add
dataplot <- merge(
dataplot,
attributes(x)$Variance_Explained[, c("n_Factors", "Variance_Cumulative")],
by = "n_Factors"
)
}
if (type == "line") {
dataplot$x <- factor(dataplot[[variable]], levels = rev(sort(levels(dataplot[[variable]]))))
dataplot$group <- "0"
dataplot$group[which.max(dataplot$n_Methods)] <- "1"
} else if (type == "area") {
dataplot$x <- dataplot[[variable]]
} else {
dataplot <- dataplot[order(dataplot[[variable]]), ]
dataplot$x <- dataplot[[variable]]
dataplot$fill <- "Not-optimal"
dataplot$fill[which.max(dataplot$n_Methods)] <- "Optimal"
}
dataplot$y <- dataplot$n_Methods / sum(dataplot$n_Methods)
rownames(dataplot) <- NULL
# Labels and titles -----------------------------------------------------
n_max <- sum(dataplot$n_Methods)
axis_lab <- paste0("% of methods (out of ", n_max, ")")
# Inverse xlab and ylab for line plot
if (type == "line") {
attr(dataplot, "info") <- list(
ylab = paste("Number of", lab),
xlab = axis_lab
)
} else {
attr(dataplot, "info") <- list(
xlab = paste("Number of", lab),
ylab = axis_lab
)
}
attr(dataplot, "info")$title <- paste("How many", lab, "to retain")
attr(dataplot, "info")$subtitle <- paste0("Number of ", lab, " considered optimal by various algorithm")
if ("Variance_Cumulative" %in% names(dataplot) && type != "line") {
attr(dataplot, "info")$subtitle <- paste0(
attr(dataplot, "info")$subtitle,
". The dashed line represent the cumulative percentage of variance explained"
)
}
class(dataplot) <- unique(c("data_plot", "see_n_factors", class(dataplot)))
dataplot
}
#' @export
data_plot.n_clusters <- data_plot.n_factors
# Plot --------------------------------------------------------------------
#' Plot method for numbers of clusters to extract or factors to retain
#'
#' The `plot()` method for the `parameters::n_factors()` and `parameters::n_clusters()`
#'
#' @param type Character vector, indicating the type of plot.
#' Options are three different shapes to illustrate the degree of consensus
#' between dimensionality methods for each number of factors;
#' `"bar"` (default) for a bar chart,
#' `"line"` for a horizontal point and line chart, or
#' `"area"` for an area chart (frequency polygon).
#' @param size Depending on `type`, a numeric value specifying size of bars,
#' lines, or segments.
#' @inheritParams data_plot
#' @inheritParams plot.see_check_normality
#'
#' @return A ggplot2-object.
#'
#' @examplesIf require("nFactors")
#' data(mtcars)
#' result <- parameters::n_factors(mtcars, type = "PCA")
#' result
#'
#' plot(result) # type = "bar" by default
#' plot(result, type = "line")
#' plot(result, type = "area")
#'
#' @export
plot.see_n_factors <- function(x,
data = NULL,
type = c("bar", "line", "area"),
size = 1,
...) {
type <- match.arg(type)
if (!inherits(x, "data_plot")) {
x <- data_plot(x, data = data, type = type)
}
if (missing(size)) {
size <- switch(type,
bar = 0.7,
line = 1,
1
)
}
# Base plot
if (type == "area") {
segment_data <- data.frame(x_intercept = x$x[which.max(x$y)], y_max = max(x$y, na.rm = TRUE))
p <- ggplot(x, aes(x = .data$x, y = .data$y)) +
geom_area(fill = flat_colors("grey")) +
geom_segment(
data = segment_data,
aes(
x = .data$x_intercept,
xend = .data$x_intercept,
y = 0,
yend = .data$y_max
),
color = flat_colors("red")
) +
geom_point(
data = segment_data,
aes(x = .data$x_intercept, y = .data$y_max),
color = flat_colors("red")
) +
scale_x_continuous(breaks = 1:max(x$x, na.rm = TRUE)) +
add_plot_attributes(x)
} else if (type == "line") {
p <- ggplot(x, aes(y = .data$x, x = .data$y, colour = .data$group)) +
geom_segment(aes(x = 0, yend = .data$x, xend = .data$y), linewidth = size) +
geom_point(size = 2 * size) +
guides(colour = "none") +
scale_x_continuous(labels = .percents) +
scale_color_manual(values = unname(flat_colors(c("grey", "red")))) +
add_plot_attributes(x)
# If line, return plot as variance explained cannot be added due to the horizontal orientation of the plot
return(p)
} else {
p <- ggplot(x, aes(x = .data$x, y = .data$y, fill = .data$fill)) +
geom_bar(stat = "identity", width = size) +
guides(fill = "none") +
add_plot_attributes(x) +
scale_x_continuous(breaks = 1:max(x$x)) +
scale_fill_manual(values = unname(flat_colors(c("grey", "red"))))
}
if ("Variance_Cumulative" %in% names(x)) {
x$Varex_scaled <- x$Variance_Cumulative * max(x$y)
p <- p +
geom_line(
data = x,
aes(x = .data$x, y = .data$Varex_scaled, group = 1),
linetype = "dashed"
) +
scale_y_continuous(
labels = .percents,
sec.axis = sec_axis(~ . / max(x$y), name = "% of variance explained", labels = .percents)
)
} else {
p <- p + scale_y_continuous(labels = .percents)
}
p
}
#' @export
plot.see_n_clusters <- plot.see_n_factors
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.