Nothing
segConstr.lm.fit <-function (y, XREG, Z, PSI, w, offs, opz, return.all.sol = FALSE)
{
useExp.k = TRUE
search.minWO<-function(h, psi, psi.old, X, y, w, offs) {
psi.ok<- psi*h + psi.old*(1-h)
PSI <- matrix(psi.ok, n, ncol = length(psi.ok), byrow=TRUE)
U1 <- (Z - PSI) * (Z > PSI)
for(i in 1:length(RList)){#trasforma le U
UList[[i]]<- cbind(Zseg[,i], U1[, id.psi.group==i])%*%invA.RList[[i]] #
#nomiUList[[i]]<- rep(i, ncol(UList[[i]]) )
}
U1<-do.call(cbind, UList) #la matrice del disegno sara' cbind(X, U1)
#if (pow[1] != 1) U1 <- U1^pow[1]
obj1 <- try(mylmWO(cbind(X, U1), y, w, offs), silent = TRUE)
#if (class(obj1)[1] == "try-error") obj1 <- try(lm.wfit(cbind(X, U1), y, w, offs), silent = TRUE)
L1 <- if (class(obj1)[1] == "try-error") L0 + 10 else obj1$L0
L1
}
#=========
search.min<-function(h, psi, psi.old, X, y, w, offs) {
psi.ok<- psi*h + psi.old*(1-h)
PSI <- matrix(psi.ok, n, ncol = length(psi.ok), byrow=TRUE)
U1 <- (Z - PSI) * (Z > PSI)
for(i in 1:length(RList)){#trasforma le U
UList[[i]]<- cbind(Zseg[,i], U1[, id.psi.group==i])%*%invA.RList[[i]] #
#nomiUList[[i]]<- rep(i, ncol(UList[[i]]) )
}
U1<-do.call(cbind, UList) #la matrice del disegno sara' cbind(X, U1)
#if (pow[1] != 1) U1 <- U1^pow[1]
obj1 <- try(mylm(cbind(X, U1), y), silent = TRUE)
#if (class(obj1)[1] == "try-error") obj1 <- try(lm.wfit(cbind(X, U1), y, w, offs), silent = TRUE)
L1 <- if (class(obj1)[1] == "try-error") L0 + 10 else obj1$L0
L1
}
# est.k <- function(x1, y1, L0) {
# ax <- log(x1)
# .x <- cbind(1, ax, ax^2)
# b <- drop(solve(crossprod(.x), crossprod(.x, y1)))
# const <- b[1] - L0
# DD <- sqrt(b[2]^2 - 4 * const * b[3])
# kk <- exp((-b[2] + DD)/(2 * b[3]))
# return(round(kk))
# }
# dpmax <- function(x, y, pow = 1) {
# if (pow == 1)
# -(x > y)
# else -pow * ((x - y) * (x > y))^(pow - 1)
# }
mylmWO <- function(x, y, w, offs = 0) {
sw <- sqrt(w)
x1 <- x * sw
y <- y - offs
y1 <- y * sw
b <- drop(solve(crossprod(x1), crossprod(x1, y1)))
fit <- drop(x%*%b)
r <- y - fit
o <- list(coefficients = b, fitted.values = fit, residuals = r, L0=sum(w*r^2),
df.residual = length(y) - length(b))
o
}
mylm <- function(x, y, w, offs) {
b <- drop(solve(crossprod(x), crossprod(x, y)))
fit <- drop(x%*%b)
r <- y - fit
o <- list(coefficients = b, fitted.values = fit, residuals = r, L0=sum(r^2),
df.residual = length(y) - length(b))
o
}
id.w.offs <- var(offs)<=0 && var(w)<=0
if(id.w.offs){
fitter<-function(x, y, w, offs) .lm.fit(x=x, y=y) #list(coefficients=drop(solve(crossprod(x), crossprod(x, y))))
mylmOK <- mylm
search.minOK <- search.min
} else {
fitter<-function(x, y, w, offs) .lm.fit(x=sqrt(w)*x, y=sqrt(w)*(y-offs))
mylmOK <- mylmWO
search.minOK <- search.minWO
}
# isZero<-function (x, neps = 1, eps = .Machine$double.eps, ...) {
# if (is.character(eps)) {
# eps <- match.arg(eps, choices = c("double.eps", "single.eps"))
# if (eps == "double.eps") {
# eps <- .Machine$double.eps
# }
# else if (eps == "single.eps") {
# eps <- sqrt(.Machine$double.eps)
# }
# }
# (abs(x) < neps * eps)
# }
isZero <- function(v) sapply(v, function(.x) identical(.x,0))
# mylmADD <- function(invXtX, X, v, Xty, y) {
# vtv <- sum(v^2)
# Xtv <- crossprod(X, v)
# m <- invXtX %*% Xtv
# d <- drop(1/(vtv - t(Xtv) %*% m))
# r <- -d * m
# invF <- invXtX + d * tcrossprod(m)
# newINV <- rbind(cbind(invF, r), c(t(r), d))
# b <- crossprod(newINV, c(Xty, sum(v * y)))
# fit <- tcrossprod(cbind(X, v), t(b))
# r <- y - fit
# o <- list(coefficients = b, fitted.values = fit, residuals = r)
# o
# }
in.psi <- function(LIM, PSI, ret.id = TRUE) {
a <- PSI[1, ] <= LIM[1, ]
b <- PSI[1, ] >= LIM[2, ]
is.ok <- !a & !b
if (ret.id)
return(is.ok)
isOK <- all(is.ok) && all(!is.na(is.ok))
isOK
}
far.psi <- function(Z, PSI, id.psi.group, ret.id = TRUE, fc = 0.93) {
nSeg <- length(unique(id.psi.group))
npsij <- tapply(id.psi.group, id.psi.group, length)
nj <- sapply(unique(id.psi.group), function(.x) {
tabulate(rowSums((Z > PSI)[, id.psi.group == .x,
drop = FALSE]) + 1)
}, simplify = FALSE)
ff <- id.far.ok <- vector("list", length = nSeg)
for (i in 1:nSeg) {
if (length(nj[[i]]) != npsij[i] + 1)
nj[[i]] <- tabulate(rowSums((Z >= PSI)[, id.psi.group ==
i, drop = FALSE]) + 1)
id.ok <- (nj[[i]] >= 2)
id.far.ok[[i]] <- id.ok[-length(id.ok)] & id.ok[-1]
ff[[i]] <- ifelse(diff(nj[[i]]) > 0, 1/fc, fc)
}
id.far.ok <- unlist(id.far.ok)
ff <- unlist(ff)
if (!ret.id) {
return(all(id.far.ok))
}
else {
attr(id.far.ok, "factor") <- ff
return(id.far.ok)
}
}
adj.psi <- function(psii, LIM) {
pmin(pmax(LIM[1, ], psii), LIM[2, ])
}
#nuovo per i vincoli
RList <- opz$RList
nomiUList<-UList<- vector("list",length(RList))
invAList <- lapply(RList, function(.x)rbind(c(1,rep(0,nrow(.x)-1)),diff(diag(nrow(.x)))))
invA.RList<-lapply(1:length(RList), function(i) invAList[[i]]%*% RList[[i]])
nomiUList<- lapply(1:length(RList), function(i)rep(i, ncol(RList[[i]])))
n <- length(y)
min.step <- opz$min.step
rangeZ <- apply(Z, 2, range)
alpha <- opz$alpha #ha gia' 2 componenti!
#limZ <- apply(Z, 2, quantile, names = FALSE, probs = alpha) #c(alpha, 1 - alpha))
limZ <- if(is.null(opz$limZ)) apply(Z, 2, quantile, names=FALSE, probs=c(alpha[1],alpha[2])) else opz$limZ
#browser()
#for(.i in opz$nomiSeg) { ##poni min(z)=0, cosi solve() in step.lm.fit non ha problemi.
# if(.i %in% colnames(XREG)) XREG[,.i] <- XREG[,.i] - min(XREG[,.i])
#}
psi <- PSI[1, ]
id.psi.group <- opz$id.psi.group
conv.psi <- opz$conv.psi
hh <- opz$h
digits <- opz$digits
pow <- opz$pow
nomiOK <- opz$nomiOK
toll <- opz$toll
gap <- opz$gap
fix.npsi <- opz$stop.if.error
dev.new <- opz$dev0
visual <- opz$visual
it.max <- old.it.max <- opz$it.max
fc <- opz$fc
names(psi) <- id.psi.group
it <- 0
epsilon <- 10
k.values <- dev.values <- NULL
psi.values <- list()
#psi.values[[length(psi.values) + 1]] <- NA
sel.col.XREG <- unique(sapply(colnames(XREG), function(x) match(x,
colnames(XREG))))
if (is.numeric(sel.col.XREG))
XREG <- XREG[, sel.col.XREG, drop = FALSE]
invXtX <- opz$invXtX
Xty <- opz$Xty
if (!in.psi(limZ, PSI, FALSE))
stop("starting psi out of the range.. see 'alpha' in seg.control.",
call. = FALSE)
if (!far.psi(Z, PSI, id.psi.group, FALSE))
stop("psi values too close each other. Please change (decreases number of) starting values",
call. = FALSE)
n.psi1 <- ncol(Z)
Zseg <- XREG[,opz$nomiSeg,drop=FALSE] #
minZ<- apply(Zseg, 2, min)
Zseg0<- Zseg
Zseg <- sweep(Zseg, 2, minZ)
XREG <- XREG[, -match(opz$nomiSeg, colnames(XREG)),drop=FALSE]
#browser()
U <- ((Z - PSI) * (Z > PSI))
#if (pow[1] != 1) U <- U^pow[1]
for(i in 1:length(RList)){#trasforma le U
UList[[i]]<- cbind(Zseg[,i], U[, id.psi.group==i])%*%invA.RList[[i]] #
#nomiUList[[i]]<- rep(i, ncol(UList[[i]]) )
}
U<-do.call(cbind, UList) #la matrice del disegno sara' cbind(X, U)
if(it.max==0){
colnames(U) <- paste("U", 1:ncol(U), sep = "")
V <- -(Z > PSI)
colnames(V) <- paste("V", 1:ncol(V), sep = "")
obj <- lm.wfit(x = cbind(XREG, U), y = y, w = w, offset = offs)
L1 <- sum(obj$residuals^2 * w)
obj$coefficients <- c(obj$coefficients, rep(0, ncol(V)))
#names(obj$coefficients) <- names.coef
obj$epsilon <- epsilon
obj$it <- it
obj <- list(obj = obj, it = it, psi = psi, psi.values = psi.values, X=XREG, idU=ncol(XREG)+1:(ncol(U)),
U = U, V = V, rangeZ = rangeZ, epsilon = epsilon, nomiOK = nomiOK,
SumSquares.no.gap = L1, id.psi.group = id.psi.group,
id.warn = TRUE, constr=list(RList=RList, invAList=invAList, invA.RList=invA.RList, nomiUList =nomiUList))
return(obj)
}
obj0 <- try(mylmOK(cbind(XREG, U), y, w, offs), silent = TRUE)
#if (class(obj0)[1] == "try-error") obj0 <- lm.wfit(cbind(XREG, U), y, w, offs)
L0 <- obj0$L0 #sum(obj0$residuals^2 * w)
n.intDev0 <- nchar(strsplit(as.character(L0), "\\.")[[1]][1])
dev.values[length(dev.values) + 1] <- L0
psi.values[[length(psi.values) + 1]] <- psi
#browser()
if (visual) {
cat(paste("iter = ", sprintf("%2.0f", 0), " dev = ",
sprintf(paste("%", n.intDev0 + 6, ".5f", sep = ""),
L0), " k = ", sprintf("%2.0f", NA), " n.psi = ",
formatC(length(unlist(psi)), digits = 0, format = "f"),
" ini.psi = ", paste(formatC(unlist(psi), digits = 3,
format = "f"), collapse = " "), sep = ""), "\n")
}
id.warn <- FALSE
id.psi.changed <- rep(FALSE, it.max)
#============================================== inizio ciclo
#browser()
#Zseg (a differenza di Z) ha una colonna per ogni variabile segmented, indipendentemente dal n.psi
tolOp<-if(is.null(opz$tol.opt)) seq(.001, .Machine$double.eps^0.25, l=it.max) else rep(opz$tol.opt, it.max)
idU <- ncol(XREG)+(1:ncol(U))
idZ <- 1:length(psi) + max(idU)
while (abs(epsilon) > toll) {
it <- it + 1
n.psi0 <- n.psi1
n.psi1 <- ncol(Z)
if (n.psi1 != n.psi0) {
U <- ((Z - PSI) * (Z > PSI))
#if (pow[1] != 1) U <- U^pow[1]
obj0 <- try(mylm(cbind(XREG, U), y, w, offs), silent = TRUE)
if (class(obj0)[1] == "try-error")
obj0 <- lm.wfit(cbind(XREG, U), y, w, offs)
L0 <- sum(obj0$residuals^2 * w)
} else {
#V <- dpmax(Z, PSI, pow = pow[2])
V <- (Z>PSI)
U <- (Z - PSI) * V
V <- -V
}
for(i in 1:length(RList)){#trasforma le U
UList[[i]]<- cbind(Zseg[,i], U[, id.psi.group==i])%*%invA.RList[[i]] #
nomiUList[[i]]<- rep(i, ncol(UList[[i]]) )
}
U<-do.call(cbind, UList)
X <- cbind(XREG, U, V)
#rownames(X) <- NULL
#colnames(X)[(ncol(XREG) + 1):ncol(U)] <- paste("U",
# 1:ncol(U), sep = "") #, paste("V", 1:ncol(V), sep = ""))
obj <- fitter(X, y, w, offs) #lm.wfit(x = X, y = y, w = w, offset = offs)
beta.c <- obj$coefficients[idU]
coefUList <- lapply(1:length(RList), function(i) (invA.RList[[i]]%*%beta.c[unlist(nomiUList)==i])[-1])
beta.c <- unlist(coefUList)
gamma.c <- obj$coefficients[idZ] #[colnames(Z)]
if (any(isZero(c(beta.c, gamma.c)))) {
if (fix.npsi) {
if (return.all.sol)
return(list(dev.values, psi.values))
else stop("breakpoint estimate too close or at the boundary causing NA estimates.. too many breakpoints being estimated?",
call. = FALSE)
} else {
id.coef.ok <- !isZero(gamma.c)
psi <- psi[id.coef.ok]
if (length(psi) <= 0) {
warning(paste("All breakpoints have been removed after",
it, "iterations.. returning 0"), call. = FALSE)
return(0)
}
gamma.c <- gamma.c[id.coef.ok]
beta.c <- beta.c[id.coef.ok]
Z <- Z[, id.coef.ok, drop = FALSE]
rangeZ <- rangeZ[, id.coef.ok, drop = FALSE]
limZ <- limZ[, id.coef.ok, drop = FALSE]
nomiOK <- nomiOK[id.coef.ok]
id.psi.group <- id.psi.group[id.coef.ok]
names(psi) <- id.psi.group
}
}
psi.old <- psi
psi <- psi.old + hh*gamma.c/beta.c
#aggiusta la stima di psi..
psi<- adj.psi(psi, limZ)
psi<-unlist(tapply(psi, opz$id.psi.group, sort), use.names =FALSE)
#browser()
a<-optimize(search.min, c(0,1), psi=psi, psi.old=psi.old, X=XREG, y=y, w=w, offs=offs, tol=tolOp[it])
k.values[length(k.values) + 1] <- use.k <- a$minimum
L1<- a$objective
#L1.k[length(L1.k) + 1] <- L1<- a$objective
psi <- psi*use.k + psi.old* (1-use.k)
psi<- adj.psi(psi, limZ)
if (!is.null(digits)) psi <- round(psi, digits)
PSI <- matrix(psi, n, ncol = length(psi), byrow = TRUE)
U1 <- (Z - PSI) * (Z > PSI)
#if (pow[1] != 1) U1 <- U1^pow[1]
#obj1 <- try(mylm(cbind(XREG, U1), y, w, offs), silent = TRUE)
#if (class(obj1)[1] == "try-error") obj1 <- try(lm.wfit(cbind(XREG, U1), y, w, offs), silent = TRUE)
if (visual) {
flush.console()
cat(paste("iter = ", sprintf("%2.0f", it),
" dev = ", sprintf(paste("%", n.intDev0 + 6, ".5f", sep = ""), L1),
" k = ", sprintf("%2.3f", use.k), " n.psi = ", formatC(length(unlist(psi)), digits = 0, format = "f"),
" est.psi = ", paste(formatC(unlist(psi), digits = 3, format = "f"), collapse = " "), sep = ""), "\n")
}
epsilon <- (L0 - L1)/(abs(L0) + 0.1)
L0 <- L1
U <- U1
k.values[length(k.values) + 1] <- use.k
psi.values[[length(psi.values) + 1]] <- psi
dev.values[length(dev.values) + 1] <- L0
id.psi.far <- far.psi(Z, PSI, id.psi.group, TRUE, fc = opz$fc)
id.psi.in <- in.psi(limZ, PSI, TRUE)
id.psi.ok <- id.psi.in & id.psi.far
if (!all(id.psi.ok)) {
if (fix.npsi) {
psi <- psi * ifelse(id.psi.far, 1, attr(id.psi.far,
"factor"))
PSI <- matrix(rep(psi, rep(nrow(Z), length(psi))),
ncol = length(psi))
id.psi.changed[it] <- TRUE
} else {
Z <- Z[, id.psi.ok, drop = FALSE]
PSI <- PSI[, id.psi.ok, drop = FALSE]
rangeZ <- rangeZ[, id.psi.ok, drop = FALSE]
limZ <- limZ[, id.psi.ok, drop = FALSE]
nomiOK <- nomiOK[id.psi.ok]
id.psi.group <- id.psi.group[id.psi.ok]
psi.old <- psi.old[id.psi.ok]
psi <- psi[id.psi.ok]
names(psi) <- id.psi.group
if (ncol(PSI) <= 0) {
warning(paste("All breakpoints have been removed after",
it, "iterations.. returning 0"), call. = FALSE)
return(0)
}
}
}
if (it >= it.max) {
id.warn <- TRUE
break
}
} #end while..
##############################################################################
if (id.psi.changed[length(id.psi.changed)])
warning(paste("Some psi (", (1:length(psi))[!id.psi.far],
") changed after the last iter.", sep = ""), call. = FALSE)
if (id.warn)
warning(paste("max number of iterations (", it, ") attained",
sep = ""), call. = FALSE)
attr(psi.values, "dev") <- dev.values
attr(psi.values, "k") <- k.values
psi <- unlist(tapply(psi, id.psi.group, sort))
names(psi) <- id.psi.group
names.coef <- names(obj$coefficients)
#PSI.old <- PSI
PSI <- matrix(psi, n, ncol = length(psi), byrow = TRUE)
#if (sd(PSI - PSI.old) > 0 || id.psi.changed[length(id.psi.changed)]) {
#browser()
V <- -(Z > PSI)
colnames(V) <- paste("V", 1:ncol(V), sep = "")
U <- (Z - PSI) * (Z > PSI)
for(i in 1:length(RList)){#trasforma le U
UList[[i]]<- cbind(Zseg0[,i], U[, id.psi.group==i])%*%invA.RList[[i]]
nomiUList[[i]]<- rep(i, ncol(UList[[i]]) )
}
U<-do.call(cbind, UList) #X <- cbind(XREG, U, V)
colnames(U) <- paste("U", 1:ncol(U), sep = "")
#obj <- mylmOK(x = cbind(XREG, U), y = y, w = w, offs = offs)
#L1 <- obj$L0
#browser()
obj <- fitter(cbind(XREG, U), y, w, offs) #lm.wfit()
#obj <- lm.wfit(cbind(XREG, U), y, w, offs)
L1 <- sum(obj$residuals^2 * w)
#browser()
#idInt<-match("(Intercept)", names(obj$coefficients),0)
#obj$coefficients[idInt] <- obj$coefficients[idInt]-sum(obj$coefficients[opz$nomiSeg]*minZ)
obj$coefficients <- c(obj$coefficients, rep(0, ncol(V)))
obj$df.residual <- length(y) - length(obj$coefficients)
obj$fitted.values <- y - obj$residuals
#names(obj$coefficients) <- names.coef
obj$epsilon <- epsilon
obj$it <- it
obj <- list(obj = obj, it = it, psi = psi, psi.values = psi.values, X=XREG, idU=ncol(XREG)+1:(ncol(U)),
U = U, V = V, rangeZ = rangeZ, epsilon = epsilon, nomiOK = nomiOK,
SumSquares.no.gap = L1, id.psi.group = id.psi.group, id.warn = id.warn,
constr=list(RList=RList, invAList=invAList, invA.RList=invA.RList, nomiUList =nomiUList))
#SlopeList <- lapply(1:length(RList), function(i) RList[[i]]%*%beta.c[unlist(nomiUList)==i])
return(obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.