R/stutterabif.R

Defines functions stutterabif

Documented in stutterabif

stutterabif <- function(abifdata, chanel, poswild, 
                        datapointbefore = 70, datapointafter = 20,
                        datapointsigma = 3.5,
                        chanel.names = c(1:4,105),
                        DATA = paste("DATA", chanel.names[chanel], sep = "."),
                        maxrfu = 1000,
                        method = "monoH.FC",
                        pms = 6,
                        fig = FALSE){
    
    xseq <- floor((poswild-datapointbefore):(poswild+datapointafter))
    yseq <- abifdata$Data[[DATA]][xseq]
    #
    # The baseline for the signal is taken as the most common value:
    #
    baseline <- baselineabif(yseq, maxrfu = maxrfu)
    #
    # Values below baseline are forced to baseline:
    #
    yseq[yseq < baseline] <- baseline
    #
    # Set baseline to zero:
    #
    yseq <- yseq - baseline
    #
    # First pass to fit a gaussian on wild allele:
    #
    ytheo.one <- function(p, x) p[1]*stats::dnorm(x, p[2], p[3])
    obj.one <- function(p) sum(( yseq - ytheo.one(p, xseq))^2)
    guess.one <- numeric(3)
    guess.one[1] <- datapointsigma*sqrt(2*pi)*max(yseq)
    guess.one[2] <- poswild
    guess.one[3] <- datapointsigma
    suppressWarnings(nlmres.one <- stats::nlm(obj.one, p = guess.one))
    #
    # Second pass to estimate stutter allele parameters. We do
    # not take into account wild peak allele data.
    #
    est <- nlmres.one$estimate
    censored <- floor(est[2] - 6*est[3]) # cut at mu - 6 sigma
    ytheo.two <- function(p, x) p[1]*stats::dnorm(x, p[2], p[3])
    used <- ( xseq < censored )
    obj.two <- function(p) sum(( yseq[used] - ytheo.two(p, xseq[used]))^2)
    guess.two <- numeric(3)
    guess.two[1] <- datapointsigma*sqrt(2*pi)*max(yseq[used])
    guess.two[2] <- xseq[which.max(yseq[used])]
    guess.two[3] <- datapointsigma
    suppressWarnings(nlmres.two <- stats::nlm(obj.two, p = guess.two))
    est2 <- nlmres.two$estimate
    #
    # Fit a spline:
    # 
    spfun <- stats::splinefun(xseq, yseq, method = method)
    xx <- seq(min(xseq), max(xseq), le = 500)
    yy <- spfun(xx)  
    #
    # Compute output result:
    #
    
    x1inf <- est2[2] - pms*est2[3]
    x1sup <- est2[2] + pms*est2[3]
    l1 <- stats::optimize(spfun, interval = c(x1inf, x1sup), maximum = TRUE)$maximum
    h1 <- spfun(l1)
    s1 <- stats::integrate(spfun, x1inf, x1sup)$value
    
    x2inf <- est[2] - pms*est[3]
    x2sup <- est[2] + pms*est[3]
    l2 <- stats::optimize(spfun, interval = c(x2inf, x2sup), maximum = TRUE)$maximum
    h2 <- spfun(l2)
    s2 <- stats::integrate(spfun, x2inf, x2sup)$value
    
    rh <- h1/h2
    rs <- s1/s2
    
    p <- list(p1 = est2[1], mu1 = est2[2], sd1 = est2[3],
              p2 = est[1], mu2 = est[2], sd2 = est[3],
              xseq = xseq, yseq = yseq)
    if(fig){
        graphics::plot(xseq, yseq,
             main = paste("rh = ", round(rh, 5), "rs =", round(rs, 5)),
             ylab = "RFU", las = 1,
             xlab = "Time in datapoint units")
        graphics::abline(h = 0, lty = 3)
        graphics::abline(v = c(l1, l2), lty=2, col = c("red", "blue"))
        graphics::abline(h = c(h1, h2), lty=2, col = c("red", "blue"))
        
        #lines(xx, yy, col = "red")
        #
        # Stutter:
        #
        xx <- seq(x1inf, x1sup, le = 500)
        yy <- spfun(xx)
        graphics::lines(xx, yy, col = "red", lwd = 2)
        #
        # Wild Allele:
        #
        xx <- seq(x2inf, x2sup, le = 500)
        yy <- spfun(xx)
        graphics::lines(xx, yy, col = "blue", lwd = 2)
        #
        # legend:
        #
        graphics::legend("topleft", inset = 0.01, legend = c("Stutter product",
                                                   "Corresponding allele"), lty = 1, lwd = 2, col = c("red", "blue"),
               bg = "white", title = "Datapoints used for:")
    }
    return(list(rh = rh, rs = rs, h1 = h1, h2 = h2, s1 = s1, s2 = s2, p = p))
}

Try the seqinr package in your browser

Any scripts or data that you put into this service are public.

seqinr documentation built on May 29, 2024, 6:36 a.m.