Err_RADseq | R Documentation |
Convert per-allele genotyping rates at homozygous (E0) and heterozygous (E1) sites to a length-3 vector with per-locus error rates hom|hom, het|hom, hom|het.
Err_RADseq(E0 = 0.005, E1 = 0.05, Return = "vector")
E0 |
per-allele genotyping rates at homozygous sites |
E1 |
per-allele genotyping rates at heterozygous sites |
Return |
output format, 'vector' (default) or 'matrix' |
Estimation of per-allele genotyping rates is described in Bresadola et al (2020) - 'Estimating and accounting for genotyping errors in RAD-seq experiments', MER. The error model implemented here is identical to that in Table 1 of that paper, and the default values are also taken from that paper.
For further information on how the sequoia package handles genotyping errors,
see ErrToM
.
Depending on Return
, either:
'vector'
: a length 3 vector, with the probabilities (observed
given actual) hom|other hom, het|hom, and hom|het.
'matrix'
: a 3x3 matrix, with probabilities of observed
genotypes (columns) conditional on actual (rows)
# Compare with default error pattern (SNP chip based) :
Err_RADseq(E0=0.001, E1=0.05)
ErrToM(0.05*(1-0.05)*2, Return='vector')
# usage in sequoia() and other functions:
Err_low <- Err_RADseq(E0=0.002, E1=0.05)
Err_high <- Err_RADseq(E0=0.01, E1=0.15)
## Not run:
SeqOUT_lowErr <- sequoia(GenoM, LHdata, Err=Err_low)
SeqOUT_highErr <- sequoia(GenoM, LHdata, Err=Err_high)
# also usable for confidence estimates, and to explore potential consequences
# of the actual genotyping error rate being much higher/lower than assumed
EC <- EstConf(best_pedigree, LHdata, args.sim=list(SnpError=Err_high),
args.seq=list(Err=Err_low))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.