testBaseline | R Documentation |
testBaseline
performs a two-sample signifance test of BASELINe
posterior probability density functions (PDFs).
testBaseline(baseline, groupBy)
baseline |
|
groupBy |
string defining the column in the |
A data.frame with test results containing the following columns:
region
: sequence region, such as cdr
and fwr
.
test
: string defining the groups be compared. The
string is formated as the conclusion associated with the
p-value in the form GROUP1 != GROUP2
. Meaning,
the p-value for rejection of the null hypothesis that
GROUP1 and GROUP2 have equivalent distributions.
pvalue
: two-sided p-value for the comparison.
fdr
: FDR corrected pvalue
.
Yaari G, et al. Quantifying selection in high-throughput immunoglobulin sequencing data sets. Nucleic Acids Res. 2012 40(17):e134. (Corretions at http://selection.med.yale.edu/baseline/correction/)
To generate the Baseline input object see groupBaseline.
# Subset example data as a demo
data(ExampleDb, package="alakazam")
db <- subset(ExampleDb, c_call %in% c("IGHM", "IGHG"))
set.seed(112)
db <- dplyr::slice_sample(db, n=200)
# Collapse clones
db <- collapseClones(db, cloneColumn="clone_id",
sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
method="thresholdedFreq", minimumFrequency=0.6,
includeAmbiguous=FALSE, breakTiesStochastic=FALSE)
# Calculate BASELINe
baseline <- calcBaseline(db,
sequenceColumn="clonal_sequence",
germlineColumn="clonal_germline",
testStatistic="focused",
regionDefinition=IMGT_V,
targetingModel=HH_S5F,
nproc=1)
# Group PDFs by the isotype
grouped <- groupBaseline(baseline, groupBy="c_call")
# Visualize isotype PDFs
plot(grouped, "c_call")
# Perform test on isotype PDFs
testBaseline(grouped, groupBy="c_call")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.