inst/examples/example1x-single-population.R

# Example 1 , read a region from 1000 genomes, simulate 300 individuals, compute and display LD patterns

library("sim1000G")
library(gplots)

#downloadGeneticMap( chromosome  = 4)
#readGeneticMap( chromosome = 4)


initializeSimulation  = function(vcf_file_name = NA,
                                 min_maf = 1e-10,
                                 max_maf = 0.02,
                                 maxNumberOfVariants = 300,
                                 maxNumberOfIndividuals = 2000)
{


    vcf = readVCF(vcf_file_name,
                  maxNumberOfVariants = maxNumberOfVariants ,
                  min_maf = min_maf ,
                  max_maf = max_maf)

    vcf <<- vcf

    startSimulation(vcf, totalNumberOfIndividuals = maxNumberOfIndividuals)


}

simulatePopulation = function(num_individuals = 300)

{
    ids = generateUnrelatedIndividuals(num_individuals)
    genotypes = retrieveGenotypes(ids)
}




initializeSimulationWithStratification  =
                    function(vcf_file_name = NA,
                        subset1 = NA,
                        subset2 = NA,
                        min_maf = 1e-10,
                        max_maf = 0.02,
                        maxNumberOfVariants = 300,
                        maxNumberOfIndividuals = 2000)
{


    vcf = readVCF(vcf_file_name,
                  maxNumberOfVariants = maxNumberOfVariants ,
                  min_maf = min_maf ,
                  max_maf = max_maf)

    vcf <<- vcf

    startSimulation(vcf, totalNumberOfIndividuals = maxNumberOfIndividuals, subset = subset1)
    saveSimulation("pop1")

    startSimulation(vcf, totalNumberOfIndividuals = maxNumberOfIndividuals, subset = subset2)
    saveSimulation("pop2")


}





examineMAFandLD = function() {

    SIM$reset()


    ids = generateUnrelatedIndividuals(500)
    genotypes = retrieveGenotypes(ids)


    ld_population =   cor   (  t(SIM$population_gt1 + SIM$population_gt2 )   ) ^2

    ld_simulated_data = cor(genotypes)^2
    ld_simulated_data[1:10,1:10]

    s1 = ld_simulated_data[ lower.tri(ld_simulated_data) ]
    s2 = ld_population[ lower.tri(ld_simulated_data) ]

    plot(s1,s2)

    maf1 = apply(genotypes,2,mean)/2
    maf2 = apply( t(vcf$gt1+vcf$gt2)  , 2 ,mean)/2
    maf1[maf1>0.5] = 1-maf1[maf1>0.5]
    maf2[maf2>0.5] = 1-maf2[maf2>0.5]

    plot(maf1,maf2)


    n = nrow(ld_simulated_data)
    ld_simulated_data [ lower.tri(ld_simulated_data)  ] = ld_population[ lower.tri(ld_population) ]


    library(gplots)


    #pdf(file="/tmp/2.pdf",w=15,h=11)
    heatmap.2(ld_simulated_data , col=rev(heat.colors(899)) , trace="none",Rowv=F,Colv=F,
              rowsep = 0:10e3, colsep =  0:10e3,           sepwidth=c(0.001,0.001),sepcolor=rgb(0,0,0,0.04),
              offsetRow = 100,offsetCol = 100, breaks=seq(0,1,l=900),

              row.names = "")
    #dev.off()

    heatmap.2(ld_population , col=rev(heat.colors(899)) , trace="none",Rowv=F,Colv=F,
              rowsep = 0:10e3, colsep =  0:10e3,           sepwidth=c(0.001,0.001),sepcolor=rgb(0,0,0,0.04),
              offsetRow = 100,offsetCol = 100, breaks=seq(0,1,l=900),

              row.names = "")




}




x = list.files(path = "/tmp/fs/tmp/CEU-TSI-GBR/", full.names = T)



vcf_file = "/tmp/fs/tmp/CEU-TSI-GBR/CEU-TSI-GBR-region-chr4-202-NOCT.vcf.gz"
vcf_file = sample(x,1)

vcf_file = "/tmp/fs/tmp/extract-2mbp/eur-2MBp/region-chr1-121-r121.0MBp.vcf.gz"

#vcf_file = "~/fs/tmp/CEU-TSI-GBR-region-chr4-34-ABLIM2.vcf.gz"

initializeSimulation(vcf_file,maxNumberOfVariants = 500, min_maf=0.15, max_maf=1)



genotypes = simulatePopulation(100)


v1 = subsetVCF(vcf,var_id = vcf$varid[1:10])
str(as.list(v1))


examineMAFandLD()





# vcf = readVCF("~/fs/tmp/ASW-region-chr4-93-TMEM156.vcf.gz" , maxNumberOfVariants = 5000, min_maf =  1e-6, max_maf = 0.02)
vcf1 = readVCF("~/fs/tmp/CEU-TSI-GBR/CEU-TSI-GBR-region-chr4-205-MAML3.vcf.gz",
               maxNumberOfVariants = 5000,  min_maf =  1e-6, max_maf = 0.02)


vcf2 = readVCF("~/fs/tmp/AFR/ASW-LWK-YRI-region-chr4-205-MAML3.vcf.gz",
               maxNumberOfVariants = 5000,  min_maf = 1e-6, max_maf = 0.05)

common = intersect(vcf1$varid,vcf2$varid)

vcf1 = subsetVCF(vcf1, var_id = common)
vcf2 = subsetVCF(vcf2, var_id = common)

table(vcf1$varid == vcf2$varid)


plot(vcf1$maf,vcf2$maf)
# for(i in 1:100) {genotypes = simulatePopulation(100) }


startSimulation(vcf1, totalNumberOfIndividuals = 2000)
saveSimulation("pop1")

startSimulation(vcf2, totalNumberOfIndividuals = 2000)
saveSimulation("pop2")






ped = read.table("20130606_g1k.ped",h=T,as=T,sep="\t")
pops = split(ped$Individual.ID,list(ped$Population))

id_firstPopulation = c( pops$CEU, pops$TSI )
id_secondPopulation = c( pops$ASW )


initializeSimulationWithStratification (
   vcf_file,
   min_maf = 1e-10,
   max_maf = 1,
   maxNumberOfVariants = 200,
   subset1 = id_firstPopulation,
   subset2 = id_secondPopulation,
   maxNumberOfIndividuals = 3000
)


loadSimulation("pop1")
gt1 = simulatePopulation(100)

loadSimulation("pop2")
gt2 = simulatePopulation(30)

x=gt1





loadSimulation("pop1")

maf1 = apply(simulatePopulation(200) , 2 , mean)/2
maf1[maf1>0.5] = 1 - maf1[maf1>0.5]

loadSimulation("pop2")

maf2 = apply(simulatePopulation(200) , 2 , mean)/2
maf2[maf2>0.5] = 1 - maf2[maf2>0.5]

plot(maf1,maf2)

Try the sim1000G package in your browser

Any scripts or data that you put into this service are public.

sim1000G documentation built on June 10, 2019, 1:01 a.m.