Nothing
map <- readRDS("map.rds")
pop <- population("pop", time = 1000, N = 10, map = map, center = c(0, 40), radius = 500e3) %>%
move(trajectory = c(10, 10), start = 900, end = 700, snapshots = 3)
test_that("temporal consistency of interaction parameter changes is enforced", {
expect_error(set_dispersal(pop, time = 950, competition = 100),
"The new event (.*) pre-dates the last specified active event (.*)")
expect_silent(set_dispersal(pop, time = 50, competition = 100))
})
test_that("at least one interaction parameter is specified", {
expect_error(set_dispersal(pop, time = 1000),
"At least one spatial interaction parameter must be specified")
})
test_that("interaction parameter must be positive, non-zero values", {
msg <- "Spatial interaction parameters can only have positive"
expect_error(set_dispersal(pop, time = 1000, competition = -100), msg)
expect_error(set_dispersal(pop, time = 1000, mating = -100), msg)
expect_error(set_dispersal(pop, time = 1000, dispersal = -100), msg)
})
test_that("interaction parameter change is correctly recorded", {
x1 <- set_dispersal(pop, time = 100, competition = 100)
x2 <- set_dispersal(pop, time = 100, mating = 50)
x3 <- set_dispersal(pop, time = 100, dispersal = 20)
x4 <- set_dispersal(pop, time = 100, competition = 50, dispersal = 10)
hist1 <- attr(x1, "history") %>% .[[length(.)]]
expect_true(hist1$pop == pop$pop[1])
expect_true(hist1$time == 100)
expect_true(hist1$event == "dispersal")
expect_true(hist1$competition == 100)
expect_true(is.na(hist1$mating))
expect_true(is.na(hist1$dispersal))
hist2 <- attr(x2, "history") %>% .[[length(.)]]
expect_true(hist2$mating == 50)
hist3 <- attr(x3, "history") %>% .[[length(.)]]
expect_true(hist3$dispersal == 20)
hist4 <- attr(x4, "history") %>% .[[length(.)]]
expect_true(hist4$competition == 50 && hist4$dispersal == 10)
})
test_that("SLiM dispersals match expectations laid by R distributions", {
skip_if(!is_slendr_env_present())
seed <- 42
set.seed(seed)
map <- world(xrange = c(0, 100), yrange = c(0, 100), landscape = "blank")
slim_sim <- function(dispersal_fun, dispersal, seed) {
pop <- population("pop", time = 1, N = 3000, map = map, center = c(50, 50), radius = 0.5,
dispersal = 0.1) %>%
set_range(time = 2, center = c(50, 50), radius = 50) %>%
set_dispersal(time = 2, dispersal = dispersal, dispersal_fun = dispersal_fun)
model <- compile_model(
pop, file.path(tempdir(), paste0("model_", dispersal_fun)),
generation_time = 1, competition = 0, mating = 1,
simulation_length = 2, resolution = 0.1, overwrite = TRUE, force = TRUE
)
locations_file <- tempfile(fileext = ".gz")
slim(model, sequence_length = 1, recombination_rate = 0, method = "batch",
locations = locations_file, max_attempts = 1, verbose = FALSE, random_seed = seed)
locations <- readr::read_tsv(locations_file, show_col_types = FALSE, progress = FALSE) %>%
reproject(coords = ., from = "raster", to = "world", model = model, add = TRUE) %>%
dplyr::filter(gen == 0) %>%
dplyr::mutate(distance = sqrt((newx - 50)^2 + (newy - 50)^2)) %>%
dplyr::mutate(fun = dispersal_fun)
locations
}
normal <- slim_sim("normal", 10, seed)
uniform <- slim_sim("uniform", 10, seed)
cauchy <- slim_sim("cauchy", 10, seed)
exp <- slim_sim("exponential", 10, seed)
brownian <- slim_sim("brownian", 10, seed)
slim_distances <- rbind(normal, uniform, cauchy, exp, brownian) %>%
dplyr::select(distance, fun) %>%
dplyr::mutate(source = "SLiM")
r_sim <- function(param, fun) {
if (fun == "rnorm")
distance <- rnorm(1, mean = 0, sd = param)
else if (fun == "runif")
distance <- runif(1, min = 0, max = param)
else if (fun == "rcauchy")
distance <- rcauchy(1, location = 0, scale = param)
else if (fun == "rexp")
distance <- rexp(1, rate = 1 / param)
else if (fun == "brownian") {
y <- rnorm(1, mean = 0, sd = param)
x <- rnorm(1, mean = 0, sd = param)
distance <- sqrt(x ^ 2 + y ^ 2)
} else
stop("Unknown distribution function", fun, call. = FALSE)
angle <- ifelse(fun == "brownian",
tan(y / x),
runif(1, min = 0, max = 2 * pi))
x <- distance * cos(angle)
y <- distance * sin(angle)
c(x, y)
}
n <- 10000
r_distances <- dplyr::tibble(
distance = c(
sqrt(colSums(replicate(n, r_sim(10, "rnorm"))^2)),
sqrt(colSums(replicate(n, r_sim(10, "runif"))^2)),
sqrt(colSums(replicate(n, r_sim(10, "rcauchy"))^2)),
sqrt(colSums(replicate(n, r_sim(10, "rexp"))^2)),
sqrt(colSums(replicate(n, r_sim(10, "brownian"))^2))
),
fun = c(rep("normal", n), rep("uniform", n), rep("cauchy", n),
rep("exponential", n), rep("brownian", n)),
source = "R"
) %>%
dplyr::filter(distance <= 50)
distances <- rbind(slim_distances, r_distances)
# library(ggplot2)
# p <- ggplot2::ggplot(distances, aes(distance, color = source)) +
# geom_density() +
# coord_cartesian(xlim = c(0, 50)) +
# facet_wrap(~ fun, scales = "free") +
# guides(color = guide_legend("simulation"))
#
# original_png <- "distances.png"
# ggsave(original_png, p, width = 8, height = 5)
# compare the SLiM dispersal distributions to the distributions randomly
# sampled in R using the Kolmogorov-Smirnov test
expect_true(ks.test(
slim_distances[slim_distances$fun == "normal", ]$distance,
r_distances[r_distances$fun == "normal", ]$distance
)$p.value > 0.05)
expect_true(ks.test(
slim_distances[slim_distances$fun == "uniform", ]$distance,
r_distances[r_distances$fun == "uniform", ]$distance
)$p.value > 0.05)
expect_true(ks.test(
slim_distances[slim_distances$fun == "cauchy", ]$distance,
r_distances[r_distances$fun == "cauchy", ]$distance
)$p.value > 0.05)
expect_true(ks.test(
slim_distances[slim_distances$fun == "exponential", ]$distance,
r_distances[r_distances$fun == "exponential", ]$distance
)$p.value > 0.05)
expect_true(ks.test(
slim_distances[slim_distances$fun == "brownian", ]$distance,
r_distances[r_distances$fun == "brownian", ]$distance
)$p.value > 0.05)
# decrease the gigantic table to make the package smaller overall
set.seed(42)
distances <- distances[sort(sample(1:nrow(distances), size = 5000)), ]
# current_tsv <- paste0(tempfile(), ".tsv.gz")
# readr::write_tsv(distances, current_tsv, progress = FALSE)
original_tsv <- "distances.tsv.gz"
# readr::write_tsv(distances, original_tsv, progress = FALSE)
orig_distances <- readr::read_tsv(original_tsv, show_col_types = FALSE, progress = FALSE)
# make sure that the current distance distribution matches the original one
expect_equal(distances, orig_distances, tolerance = 1e-15)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.