Nothing
get_hosts <- function(
ntasks = 1,
tmp_path = getwd(),
...
) {
# In case that the host retrival fails, this should be the exit mechanism
on.exit({
if (exists("jobid") && !exists("clean"))
tryCatch(scancel(jobid), error = function(e) e)
})
# Creating job name and file
fn <- tempfile("slurmr-job-", tmpdir = opts_slurmR$get_tmp_path())
jn <- basename(fn)
out <- sprintf("%s/%s.out", tmp_path, jn)
# Writing the script
dots <- c(list(ntasks = ntasks, output = out), list(...))
dat <- paste(
"#!/bin/sh",
paste0("#SBATCH ", parse_flags(dots), collapse = "\n"),
paste(opts_slurmR$get_preamble(), collapse = "\n"),
"echo ==start-hostnames==",
"srun hostname",
"sleep infinity",
sep = "\n"
)
writeLines(dat, fn)
# Submitting the job
jobid <- sbatch(fn, wait = FALSE, submit = TRUE)
# Returning
hosts <- function() {
tryCatch({
hostnames <- suppressWarnings(readLines(out))
hostnames_start <- which(grepl("^==start-hostnames==$", hostnames)) + 1L
ans <- hostnames[hostnames_start:(hostnames_start + ntasks - 1L)]
if (any(is.na(ans)))
stop("Still reading...", call. = FALSE)
ans
}, error = function(e) e)
}
clean <- function() suppressWarnings(file.remove(out))
structure(
list(
hosts = hosts,
jobid = jobid,
output = out,
script = fn,
clean = clean
),
class = "slurm_hosts"
)
}
#' Create a Parallel Socket Cluster using Slurm
#'
#' This function is essentially a wrapper of the function [parallel::makePSOCKcluster].
#' `makeSlurmCluster` main feature is adding node addresses.
#'
#' @template job_name-tmp_path
#' @details By default, if the `time` option is not specified via `...`,
#' then it is set to the value `01:00:00`, this is, 1 hour.
#' @param max_wait Integer scalar. Wait time before exiting with error while
#' trying to read the nodes information.
#' @param cluster_opt A list of arguments passed to [parallel::makePSOCKcluster].
#' @param ... Further arguments passed to [Slurm_EvalQ] via `sbatch_opt`.
#' @param verb Logical scalar. If `TRUE`, the function will print messages on
#' screen reporting on the status of the job submission.
#' @param n Integer scalar. Size of the cluster object (see details).
#'
#' @export
#' @details Once a job is submitted via Slurm, the user gets access to the nodes
#' associated with it, which allows users to star new processes within those.
#' By means of this, we can create Socket, also known as "PSOCK", clusters across
#' nodes in a Slurm environment. The name of the hosts are retrieved and passed
#' later on to [parallel::makePSOCKcluster].
#'
#' It has been the case that R fails to create the cluster with the following
#' message in the Slurm log file:
#'
#' ```
#' srun: fatal: SLURM_MEM_PER_CPU, SLURM_MEM_PER_GPU, and SLURM_MEM_PER_NODE are mutually exclusive
#' ```
#'
#' In such cases, setting the memory, for example, upfront can solve the problem.
#' For example:
#'
#' ```
#' cl <- makeSlurmCluster(20, mem = 20)
#' ```
#'
#' If the problem persists, i.e., the cluster cannot be created, make sure that
#' your Slurm cluster allows Socket connections between nodes.
#'
#' @section Maximum number of connections:
#'
#' By default, R limits the number of simultaneous connections (see this thread
#' in R-sig-hpc \url{https://stat.ethz.ch/pipermail/r-sig-hpc/2012-May/001373.html})
#' Current maximum is 128 (R version 3.6.1). To modify that limit, you would need
#' to reinstall R updating the macro `NCONNECTIONS` in the file `src/main/connections.c`.
#'
#' For now, if the user sets `n` above 128 it will get an immediate warning
#' pointing to this issue, in particular, specifying that the cluster object
#' may not be able to be created.
#'
#' @return A object of class `c("slurm_cluster", "SOCKcluster", "cluster")`. It
#' is the same as what is returned by [parallel::makePSOCKcluster] with the main
#' difference that it has two extra attributes:
#'
#' - `SLURM_JOBID` Which is the id of the Job that initialized that cluster.
#'
#' @examples
#' \dontrun{
#'
#' # Creating a cluster with 100 workers/offpring/child R sessions
#' cl <- makeSlurmCluster(100)
#'
#' # Computing the mean of a 100 random uniforms within each worker
#' # for this we can use any of the function available in the parallel package.
#' ans <- parSapply(1:200, function(x) mean(runif(100)))
#'
#' # We simply call stopCluster as we would do with any other cluster
#' # object
#' stopCluster(ans)
#'
#' # We can also specify SBATCH options directly (...)
#' cl <- makeSlurmCluster(200, partition = "thomas", time = "02:00:00")
#' stopCluster(cl)
#'
#' }
#'
makeSlurmCluster <- function(
n,
job_name = random_job_name(),
tmp_path = opts_slurmR$get_tmp_path(),
cluster_opt = list(),
max_wait = 300L,
verb = TRUE,
...
) {
if (n > 128L)
warning(
"By this version of slurmR, the maximum number of connections in R ",
"is 128. makeSlurmCluster will try to create the cluster object, ",
"but it is possible that the function fails to do so (see ?makeSlurmCluster).",
immediate. = TRUE
)
# No need of anything fancy in this case!
if (opts_slurmR$get_debug())
return(do.call(parallel::makePSOCKcluster, c(list(names = n), cluster_opt)))
sbatch_opt <- list(...)
if (is.null(sbatch_opt$time))
sbatch_opt$time <- "01:00:00"
# These are emergency steps taken in case that the user presses break or
# an error happens after the creating of the job object.
on.exit({
if (exists("job") && ( !exists("cl") || !(inherits(cl, "slurm_cluster")))) {
message(
"An error was detected before returning the cluster object. ",
"If submitted, we will try to cancel the job and stop the cluster ",
"object. Make sure that your cluster supports Socket connections between nodes."
)
if (file.exists(job$output)) {
message("The logfile of the job follows:")
message(cat(readLines(job$output), sep = "\n"))
} else {
message("No logfile found. Make sure that -tmp_path- can be accessed by R.")
}
e <- tryCatch(parallel::stopCluster(cl), error = function(e) e)
e <- tryCatch(scancel(get_job_id(job)), error = function(e) e)
if (inherits(e, "error") && !is.na(get_job_id(job))) {
warning(
"The job ", get_job_id(job), " is still running. Try canceling it using ",
"scancel on command line.", call. = FALSE, immediate. = TRUE
)
}
}
})
sbatch_opt$ntasks <- n
sbatch_opt$tmp_path <- tmp_path
sbatch_opt$`job-name` <- job_name
job <- do.call(get_hosts, sbatch_opt)
# Now, we wait until the jobs have started. All should return "RUNNING"
# Let's just wait a few seconds before jumping into conclusions!
Sys.sleep(1)
ntry <- -1L
time0 <- Sys.time()
s <- 1L
while (difftime(Sys.time(), time0, units = "secs") <= max_wait) {
# For sanity, will wait for half a second
Sys.sleep(.5)
ntry <- ntry + 1L
if (verb && ntry > 0L && !(ntry %% 5)) {
if (s %in% c(1L, 3L)) {
message("The job needs to start before continuing. ", appendLF = FALSE)
} else if (s == 2L) {
message("The job is running, waiting for the nodenames. ", appendLF = FALSE)
}
# Common message
message(
sprintf(
"Remaining wait time: %-4d(s).",
max_wait - as.integer(difftime(Sys.time(), time0, units = "s"))
)
)
Sys.sleep(3)
}
# In the case of debug mode on, we don't need to check for the job status.
# we can go directly to the R sessions
if (!opts_slurmR$get_debug())
s <- status(get_job_id(job))
# One or more failed
if (s == 99L) {
scancel(get_job_id(job))
stop(attr(s, "description"), call. = FALSE)
} else if (s == 0L) {
scancel(get_job_id(job))
stop("The job was completed. This shouldn't happen!", call. = FALSE)
} else if (s == 1L)
next
# Trying to read the dataset
nodenames <- job$hosts()
if (inherits(nodenames, what = "error"))
next
else
break
}
if (inherits(nodenames, what = "error")) {
scancel(get_job_id(job))
stop(
"While trying to read information regarding the created jobs, one or ",
"more components failed.",
call. = FALSE
)
}
if (verb)
message("Success! nodenames collected (",
paste(unique(nodenames), collapse=", "),
"). Creating the cluster object...")
# Creating the PSOCK cluster
cl <- do.call(
parallel::makePSOCKcluster,
c(list(names = nodenames), cluster_opt)
)
attr(cl, "SLURM_JOBID") <- get_job_id(job)
attr(cl, "class") <- c("slurm_cluster", attr(cl, "class"))
# The temp file is no longer needed
job$clean()
cl
}
#' @export
#' @param cl An object of class `slurm_cluster`.
#' @rdname makeSlurmCluster
#' @importFrom parallel stopCluster
#' @details The method `stopCluster` for `slurm_cluster` stops the cluster doing
#' the following:
#'
#' 1. Closes the connection by calling the `stopCluster` method for `PSOCK` objects.
#'
#' 2. Cancel the Slurm job using `scancel`.
#'
stopCluster.slurm_cluster <- function(cl) {
# First, we need to stop the original processes, this will kill the cluster
# right away!
# Removing the first class, and calling stop cluster Again!
if (!opts_slurmR$get_debug())
jobid <- get_job_id(cl)
class(cl) <- setdiff(class(cl), "slurm_cluster")
parallel::stopCluster(cl)
if (!opts_slurmR$get_debug())
scancel(jobid)
invisible()
}
#' @export
print.slurm_cluster <- function(x, ...) {
cat("A Slurm Socket cluster (jobid: ", get_job_id(x), ")\n", sep = "")
class(x) <- setdiff(class(x), "slurm_cluster")
print(x)
invisible(NULL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.