Nothing
NMix <- function(abund.formula, det.formula, data, inits, priors, tuning,
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE,
n.report = 100, n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...){
ptm <- proc.time()
# Make it look nice
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing to run the model\n");
cat("----------------------------------------\n");
}
# Functions ---------------------------------------------------------------
logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
rigamma <- function(n, a, b){
1/rgamma(n = n, shape = a, rate = b)
}
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Call ----------------------------------------------------------------
# Returns a call in which all of the specified arguments are
# specified by their full names.
cl <- match.call()
# Some initial checks -------------------------------------------------
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
if (missing(abund.formula)) {
stop("error: abund.formula must be specified")
}
if (missing(det.formula)) {
stop("error: det.formula must be specified")
}
if (!'y' %in% names(data)) {
stop("error: data y must be specified in data")
}
y <- as.matrix(data$y)
y.mat <- y
# Offset
if ('offset' %in% names(data)) {
offset <- data$offset
if (length(offset) != nrow(y) & length(offset) != 1) {
stop(paste("error: data$offset must be of length 1 or ", nrow(y), sep = ''))
}
if (length(offset) == 1) {
offset <- rep(offset, nrow(y))
}
} else {
offset <- rep(1, nrow(y))
}
if (!'abund.covs' %in% names(data)) {
if (abund.formula == ~ 1) {
if (verbose) {
message("abundance covariates (abund.covs) not specified in data.\nAssuming intercept only abundance model.\n")
}
data$abund.covs <- matrix(1, dim(y)[1], 1)
} else {
stop("error: abund.covs must be specified in data for an abundance model with covariates")
}
}
if (!is.matrix(data$abund.covs) & !is.data.frame(data$abund.covs)) {
stop("error: abund.covs must be a matrix or data frame")
}
if (sum(is.na(data$abund.covs)) > 0) {
stop("error: missing covariate values in data$abund.covs. Remove these sites from all data or impute non-missing values.")
}
if (!'det.covs' %in% names(data)) {
if (det.formula == ~ 1) {
if (verbose) {
message("detection covariates (det.covs) not specified in data.\nAssuming interept only detection model.\n")
}
data$det.covs <- list(int = rep(1, dim(y)[1]))
} else {
stop("error: det.covs must be specified in data for a detection model with covariates")
}
}
if (!is.list(data$det.covs)) {
stop("error: det.covs must be a list of matrices, data frames, and/or vectors")
}
if (missing(n.batch)) {
stop("error: must specify number of MCMC batches")
}
if (missing(batch.length)) {
stop("error: must specify length of each MCMC batch")
}
n.samples <- n.batch * batch.length
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
# Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
}
if (!(family) %in% c('Poisson', 'NB')) {
stop("family must be either 'Poisson' or 'NB'")
}
# First subset detection covariates to only use those that are included in the analysis.
data$det.covs <- data$det.covs[names(data$det.covs) %in% all.vars(det.formula)]
# Null model support
if (length(data$det.covs) == 0) {
data$det.covs <- list(int = rep(1, dim(y)[1]))
}
# Make both covariates a data frame. Unlist is necessary for when factors
# are supplied.
data$det.covs <- data.frame(lapply(data$det.covs, function(a) unlist(c(a))))
# Indicator of whether all det.covs are site level or not
site.level.ind <- ifelse(nrow(data$det.covs) == nrow(y), TRUE, FALSE)
data$abund.covs <- as.data.frame(data$abund.covs)
# Check whether random effects are sent in as numeric, and
# return error if they are.
# Abundance -------------------------
if (!is.null(findbars(abund.formula))) {
abund.re.names <- unique(unlist(sapply(findbars(abund.formula), all.vars)))
for (i in 1:length(abund.re.names)) {
if (is(data$abund.covs[, abund.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", abund.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$abund.covs[, abund.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", abund.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Detection -----------------------
if (!is.null(findbars(det.formula))) {
det.re.names <- unique(unlist(sapply(findbars(det.formula), all.vars)))
for (i in 1:length(det.re.names)) {
if (is(data$det.covs[, det.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", det.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$det.covs[, det.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", det.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Checking missing values ---------------------------------------------
# y -------------------------------
y.na.test <- apply(y, 1, function(a) sum(!is.na(a)))
if (sum(y.na.test == 0) > 0) {
stop("error: some sites in y have all missing detection histories. Remove these sites from all objects in the 'data' argument, then use 'predict' to obtain predictions at these locations if desired.")
}
# abund.covs ------------------------
if (sum(is.na(data$abund.covs)) != 0) {
stop("error: missing values in abund.covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
# det.covs ------------------------
if (!site.level.ind) {
for (i in 1:ncol(data$det.covs)) {
if (sum(is.na(data$det.covs[, i])) > sum(is.na(y))) {
stop("error: some elements in det.covs have missing values where there is an observed data value in y. Please either replace the NA values in det.covs with non-missing values (e.g., mean imputation) or set the corresponding values in y to NA where the covariate is missing.")
}
}
# Misalignment between y and det.covs
y.missing <- which(is.na(data$y))
det.covs.missing <- lapply(data$det.covs, function(a) which(is.na(a)))
for (i in 1:length(det.covs.missing)) {
tmp.indx <- !(y.missing %in% det.covs.missing[[i]])
if (sum(tmp.indx) > 0) {
if (i == 1 & verbose) {
message("There are missing values in data$y with corresponding non-missing values in data$det.covs.\nRemoving these site/replicate combinations for fitting the model.\n")
}
data$det.covs[y.missing, i] <- NA
}
}
}
if (site.level.ind) {
if (sum(is.na(data$det.covs)) != 0) {
stop("missing values in site-level det.covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
}
# Remove missing values from det.covs in order to ensure formula parsing
# works when random slopes are provided.
tmp <- apply(data$det.covs, 1, function (a) sum(is.na(a)))
data$det.covs <- as.data.frame(data$det.covs[tmp == 0, , drop = FALSE])
# Formula -------------------------------------------------------------
# Abundance -------------------------
if (is(abund.formula, 'formula')) {
tmp <- parseFormula(abund.formula, data$abund.covs)
X <- as.matrix(tmp[[1]])
X.re <- as.matrix(tmp[[4]])
x.re.names <- colnames(X.re)
x.names <- tmp[[2]]
X.random <- as.matrix(tmp[[5]])
x.random.names <- colnames(X.random)
} else {
stop("error: abund.formula is misspecified")
}
# Get RE level names
re.level.names <- lapply(data$abund.covs[, x.re.names, drop = FALSE],
function (a) sort(unique(a)))
x.re.names <- x.random.names
# Detection -----------------------
if (is(det.formula, 'formula')) {
tmp <- parseFormula(det.formula, data$det.covs)
X.p <- as.matrix(tmp[[1]])
X.p.re <- as.matrix(tmp[[4]])
x.p.re.names <- colnames(X.p.re)
x.p.names <- tmp[[2]]
X.p.random <- as.matrix(tmp[[5]])
x.p.random.names <- colnames(X.p.random)
} else {
stop("error: det.formula is misspecified")
}
p.re.level.names <- lapply(data$det.covs[, x.p.re.names, drop = FALSE],
function (a) sort(unique(a)))
x.p.re.names <- x.p.random.names
# Get basic info from inputs ------------------------------------------
# Number of sites
J <- nrow(y)
# Number of abundance parameters
p.abund <- ncol(X)
# Number of abundance random effect parameters
p.abund.re <- ncol(X.re)
# Number of detection parameters
p.det <- ncol(X.p)
# Number of detection random effect parameters
p.det.re <- ncol(X.p.re)
# Number of latent abundance random effect values
n.abund.re <- length(unlist(apply(X.re, 2, unique)))
n.abund.re.long <- apply(X.re, 2, function(a) length(unique(a)))
# Number of latent detection random effect values
n.det.re <- length(unlist(apply(X.p.re, 2, unique)))
n.det.re.long <- apply(X.p.re, 2, function(a) length(unique(a)))
if (p.det.re == 0) n.det.re.long <- 0
# Number of replicates at each site
n.rep <- apply(y, 1, function(a) sum(!is.na(a)))
# Max number of repeat visits
K.max <- dim(y.mat)[2]
# Because I like K better than n.rep
K <- n.rep
# Get indices to map N to y ---------------------------------------------
N.long.indx <- rep(1:J, dim(y)[2])
N.long.indx <- N.long.indx[!is.na(c(y))]
# Subtract 1 for indices in C
N.long.indx <- N.long.indx - 1
y <- c(y)
names.long <- which(!is.na(y))
# Make necessary adjustment for site-level covariates only
if (nrow(X.p) == J) {
X.p <- X.p[N.long.indx + 1, , drop = FALSE]
X.p.re <- X.p.re[N.long.indx + 1, , drop = FALSE]
X.p.random <- X.p.random[N.long.indx + 1, , drop = FALSE]
}
# Remove missing observations when the covariate data are available but
# there are missing detection-nondetection data.
if (nrow(X.p) == length(y)) {
X.p <- X.p[!is.na(y), , drop = FALSE]
}
if (nrow(X.p.re) == length(y) & p.det.re > 0) {
X.p.re <- X.p.re[!is.na(y), , drop = FALSE]
X.p.random <- X.p.random[!is.na(y), , drop = FALSE]
}
y <- y[!is.na(y)]
# Number of data points for the y vector
n.obs <- nrow(X.p)
# Get random effect matrices all set ----------------------------------
X.re <- X.re - 1
if (p.abund.re > 1) {
for (j in 2:p.abund.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
}
}
X.p.re <- X.p.re - 1
if (p.det.re > 1) {
for (j in 2:p.det.re) {
X.p.re[, j] <- X.p.re[, j] + max(X.p.re[, j - 1]) + 1
}
}
# Priors --------------------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# beta -----------------------
if ("beta.normal" %in% names(priors)) {
if (!is.list(priors$beta.normal) | length(priors$beta.normal) != 2) {
stop("error: beta.normal must be a list of length 2")
}
mu.beta <- priors$beta.normal[[1]]
sigma.beta <- priors$beta.normal[[2]]
if (length(mu.beta) != p.abund & length(mu.beta) != 1) {
if (p.abund == 1) {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.abund, " with elements corresponding to betas' mean", sep = ""))
} else {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.abund, " or 1 with elements corresponding to betas' mean", sep = ""))
}
}
if (length(sigma.beta) != p.abund & length(sigma.beta) != 1) {
if (p.abund == 1) {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.abund, " with elements corresponding to betas' variance", sep = ""))
} else {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.abund, " or 1 with elements corresponding to betas' variance", sep = ""))
}
}
if (length(sigma.beta) != p.abund) {
sigma.beta <- rep(sigma.beta, p.abund)
}
if (length(mu.beta) != p.abund) {
mu.beta <- rep(mu.beta, p.abund)
}
Sigma.beta <- sigma.beta * diag(p.abund)
} else {
if (verbose) {
message("No prior specified for beta.normal.\nSetting prior mean to 0 and prior variance to 100\n")
}
mu.beta <- rep(0, p.abund)
sigma.beta <- rep(100, p.abund)
Sigma.beta <- diag(p.abund) * sigma.beta
}
# alpha -----------------------
if ("alpha.normal" %in% names(priors)) {
if (!is.list(priors$alpha.normal) | length(priors$alpha.normal) != 2) {
stop("error: alpha.normal must be a list of length 2")
}
mu.alpha <- priors$alpha.normal[[1]]
sigma.alpha <- priors$alpha.normal[[2]]
if (length(mu.alpha) != p.det & length(mu.alpha) != 1) {
if (p.det == 1) {
stop(paste("error: alpha.normal[[1]] must be a vector of length ",
p.det, " with elements corresponding to alphas' mean", sep = ""))
} else {
stop(paste("error: alpha.normal[[1]] must be a vector of length ",
p.det, " or 1 with elements corresponding to alphas' mean", sep = ""))
}
}
if (length(sigma.alpha) != p.det & length(sigma.alpha) != 1) {
if (p.det == 1) {
stop(paste("error: alpha.normal[[2]] must be a vector of length ",
p.det, " with elements corresponding to alphas' variance", sep = ""))
} else {
stop(paste("error: alpha.normal[[2]] must be a vector of length ",
p.det, " or 1 with elements corresponding to alphas' variance", sep = ""))
}
}
if (length(sigma.alpha) != p.det) {
sigma.alpha <- rep(sigma.alpha, p.det)
}
if (length(mu.alpha) != p.det) {
mu.alpha <- rep(mu.alpha, p.det)
}
Sigma.alpha <- sigma.alpha * diag(p.det)
} else {
if (verbose) {
message("No prior specified for alpha.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.alpha <- rep(0, p.det)
sigma.alpha <- rep(2.72, p.det)
Sigma.alpha <- diag(p.det) * 2.72
}
# sigma.sq.mu --------------------
if (p.abund.re > 0) {
if ("sigma.sq.mu.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.mu.ig) | length(priors$sigma.sq.mu.ig) != 2) {
stop("error: sigma.sq.mu.ig must be a list of length 2")
}
sigma.sq.mu.a <- priors$sigma.sq.mu.ig[[1]]
sigma.sq.mu.b <- priors$sigma.sq.mu.ig[[2]]
if (length(sigma.sq.mu.a) != p.abund.re & length(sigma.sq.mu.a) != 1) {
if (p.abund.re == 1) {
stop(paste("error: sigma.sq.mu.ig[[1]] must be a vector of length ",
p.abund.re, " with elements corresponding to sigma.sq.mus' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.mu.ig[[1]] must be a vector of length ",
p.abund.re, " or 1 with elements corresponding to sigma.sq.mus' shape", sep = ""))
}
}
if (length(sigma.sq.mu.b) != p.abund.re & length(sigma.sq.mu.b) != 1) {
if (p.abund.re == 1) {
stop(paste("error: sigma.sq.mu.ig[[2]] must be a vector of length ",
p.abund.re, " with elements corresponding to sigma.sq.mus' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.mu.ig[[2]] must be a vector of length ",
p.abund.re, " or 1with elements corresponding to sigma.sq.mus' scale", sep = ""))
}
}
if (length(sigma.sq.mu.a) != p.abund.re) {
sigma.sq.mu.a <- rep(sigma.sq.mu.a, p.abund.re)
}
if (length(sigma.sq.mu.b) != p.abund.re) {
sigma.sq.mu.b <- rep(sigma.sq.mu.b, p.abund.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.mu.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.mu.a <- rep(0.1, p.abund.re)
sigma.sq.mu.b <- rep(0.1, p.abund.re)
}
} else {
sigma.sq.mu.a <- 0
sigma.sq.mu.b <- 0
}
# sigma.sq.p --------------------
if (p.det.re > 0) {
if ("sigma.sq.p.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.p.ig) | length(priors$sigma.sq.p.ig) != 2) {
stop("error: sigma.sq.p.ig must be a list of length 2")
}
sigma.sq.p.a <- priors$sigma.sq.p.ig[[1]]
sigma.sq.p.b <- priors$sigma.sq.p.ig[[2]]
if (length(sigma.sq.p.a) != p.det.re & length(sigma.sq.p.a) != 1) {
if (p.det.re == 1) {
stop(paste("error: sigma.sq.p.ig[[1]] must be a vector of length ",
p.det.re, " with elements corresponding to sigma.sq.ps' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.p.ig[[1]] must be a vector of length ",
p.det.re, " or 1 with elements corresponding to sigma.sq.ps' shape", sep = ""))
}
}
if (length(sigma.sq.p.b) != p.det.re & length(sigma.sq.p.b) != 1) {
if (p.det.re == 1) {
stop(paste("error: sigma.sq.p.ig[[2]] must be a vector of length ",
p.det.re, " with elements corresponding to sigma.sq.ps' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.p.ig[[2]] must be a vector of length ",
p.det.re, " or 1 with elements corresponding to sigma.sq.ps' scale", sep = ""))
}
}
if (length(sigma.sq.p.a) != p.det.re) {
sigma.sq.p.a <- rep(sigma.sq.p.a, p.det.re)
}
if (length(sigma.sq.p.b) != p.det.re) {
sigma.sq.p.b <- rep(sigma.sq.p.b, p.det.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.p.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.p.a <- rep(0.1, p.det.re)
sigma.sq.p.b <- rep(0.1, p.det.re)
}
} else {
sigma.sq.p.a <- 0
sigma.sq.p.b <- 0
}
# kappa -----------------------------
if (family == 'NB') {
if ("kappa.unif" %in% names(priors)) {
if (!is.vector(priors$kappa.unif) | !is.atomic(priors$kappa.unif) | length(priors$kappa.unif) != 2) {
stop("error: kappa.unif must be a vector of length 2 with elements corresponding to kappa's lower and upper bounds")
}
kappa.a <- priors$kappa.unif[1]
kappa.b <- priors$kappa.unif[2]
} else {
if (verbose) {
message("No prior specified for kappa.unif.\nSetting uniform bounds of 0 and 100.\n")
}
kappa.a <- 0
kappa.b <- 100
}
} else {
kappa.a <- 0
kappa.b <- 0
}
# Starting values -----------------------------------------------------
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
# N -------------------------------
if ("n" %in% names(inits)) {
N.inits <- inits$n
if (!is.vector(N.inits)) {
stop(paste("error: initial values for N must be a vector of length ",
J, sep = ""))
}
if (length(N.inits) != J) {
stop(paste("error: initial values for N must be a vector of length ",
J, sep = ""))
}
N.test <- apply(y.mat, 1, max, na.rm = TRUE)
init.test <- sum(N.inits < N.test)
if (init.test > 0) {
stop("error: initial values for latent abundance (N) are invalid. Please re-specify inits$N so initial values are greater than or equal to the max number of observed individuals at a given site during a given replicate.")
}
} else {
N.inits <- apply(y.mat, 1, max, na.rm = TRUE)
if (verbose) {
message("N is not specified in initial values.\nSetting initial values based on observed data\n")
}
}
# beta -----------------------
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (length(beta.inits) != p.abund & length(beta.inits) != 1) {
if (p.abund == 1) {
stop(paste("error: initial values for beta must be of length ", p.abund,
sep = ""))
} else {
stop(paste("error: initial values for beta must be of length ", p.abund, " or 1",
sep = ""))
}
}
if (length(beta.inits) != p.abund) {
beta.inits <- rep(beta.inits, p.abund)
}
} else {
beta.inits <- rnorm(p.abund, 0, 1)
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from a standard normal distribution\n')
}
}
# alpha -----------------------
if ("alpha" %in% names(inits)) {
alpha.inits <- inits[["alpha"]]
if (length(alpha.inits) != p.det & length(alpha.inits) != 1) {
if (p.det == 1) {
stop(paste("error: initial values for alpha must be of length ", p.det,
sep = ""))
} else {
stop(paste("error: initial values for alpha must be of length ", p.det, " or 1",
sep = ""))
}
}
if (length(alpha.inits) != p.det) {
alpha.inits <- rep(alpha.inits, p.det)
}
} else {
alpha.inits <- rnorm(p.det, 0, 1)
if (verbose) {
message("alpha is not specified in initial values.\nSetting initial values to random values from the standard normal distribution\n")
}
}
# sigma.sq.mu -------------------
if (p.abund.re > 0) {
if ("sigma.sq.mu" %in% names(inits)) {
sigma.sq.mu.inits <- inits[["sigma.sq.mu"]]
if (length(sigma.sq.mu.inits) != p.abund.re & length(sigma.sq.mu.inits) != 1) {
if (p.abund.re == 1) {
stop(paste("error: initial values for sigma.sq.mu must be of length ", p.abund.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.mu must be of length ", p.abund.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.mu.inits) != p.abund.re) {
sigma.sq.mu.inits <- rep(sigma.sq.mu.inits, p.abund.re)
}
} else {
sigma.sq.mu.inits <- runif(p.abund.re, 0.05, 1)
if (verbose) {
message("sigma.sq.mu is not specified in initial values.\nSetting initial values to random values between 0.05 and 2\n")
}
}
beta.star.indx <- rep(0:(p.abund.re - 1), n.abund.re.long)
beta.star.inits <- rnorm(n.abund.re, 0, sqrt(sigma.sq.mu.inits[beta.star.indx + 1]))
} else {
sigma.sq.mu.inits <- 0
beta.star.indx <- 0
beta.star.inits <- 0
}
# sigma.sq.p ------------------
if (p.det.re > 0) {
if ("sigma.sq.p" %in% names(inits)) {
sigma.sq.p.inits <- inits[["sigma.sq.p"]]
if (length(sigma.sq.p.inits) != p.det.re & length(sigma.sq.p.inits) != 1) {
if (p.det.re == 1) {
stop(paste("error: initial values for sigma.sq.p must be of length ", p.det.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.p must be of length ", p.det.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.p.inits) != p.det.re) {
sigma.sq.p.inits <- rep(sigma.sq.p.inits, p.det.re)
}
} else {
sigma.sq.p.inits <- runif(p.det.re, 0.05, 2)
if (verbose) {
message("sigma.sq.p is not specified in initial values.\nSetting initial values to random values between 0.05 and 2\n")
}
}
alpha.star.indx <- rep(0:(p.det.re - 1), n.det.re.long)
alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
} else {
sigma.sq.p.inits <- 0
alpha.star.indx <- 0
alpha.star.inits <- 0
}
# kappa ---------------------------
if (family == 'NB') {
if ("kappa" %in% names(inits)) {
kappa.inits <- inits[["kappa"]]
if (length(kappa.inits) != 1) {
stop("error: initial values for kappa must be of length 1")
}
} else {
kappa.inits <- runif(1, kappa.a, kappa.b)
if (verbose) {
message("kappa is not specified in initial values.\nSetting initial value to random value from the prior distribution\n")
}
}
} else {
kappa.inits <- 0
}
# Should initial values be fixed --
if ("fix" %in% names(inits)) {
fix.inits <- inits[["fix"]]
if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
stop(paste("error: inits$fix must take value TRUE or FALSE"))
}
} else {
fix.inits <- FALSE
}
if (verbose & fix.inits & (n.chains > 1)) {
message("Fixing initial values across all chains\n")
}
# Get tuning values ---------------------------------------------------
if (missing(tuning)) {
beta.tuning <- rep(1, p.abund)
beta.star.tuning <- rep(1, n.abund.re)
alpha.tuning <- rep(1, p.det)
alpha.star.tuning <- rep(1, n.det.re)
kappa.tuning <- 1
} else {
names(tuning) <- tolower(names(tuning))
# beta ---------------------------
if(!"beta" %in% names(tuning)) {
stop("error: beta must be specified in tuning value list")
}
beta.tuning <- tuning$beta
if (length(beta.tuning) != 1 & length(beta.tuning) != p.abund) {
stop(paste("error: beta tuning must be a single value or a vector of length ",
p.abund, sep = ''))
}
if (length(beta.tuning) == 1) {
beta.tuning <- rep(beta.tuning, p.abund)
}
if (p.abund.re > 0) {
# beta.star ---------------------------
if(!"beta.star" %in% names(tuning)) {
stop("error: beta.star must be specified in tuning value list")
}
beta.star.tuning <- tuning$beta.star
if (length(beta.star.tuning) != 1) {
stop("error: beta.star tuning must be a single value")
}
beta.star.tuning <- rep(beta.star.tuning, n.abund.re)
} else {
beta.star.tuning <- NULL
}
# alpha ---------------------------
if(!"alpha" %in% names(tuning)) {
stop("error: alpha must be specified in tuning value list")
}
alpha.tuning <- tuning$alpha
if (length(alpha.tuning) != 1 & length(alpha.tuning) != p.det) {
stop(paste("error: alpha tuning must be a single value or a vector of length ",
p.det, sep = ''))
}
if (length(alpha.tuning) == 1) {
alpha.tuning <- rep(alpha.tuning, p.det)
}
if (p.det.re > 0) {
# alpha.star ---------------------------
if(!"alpha.star" %in% names(tuning)) {
stop("error: alpha.star must be specified in tuning value list")
}
alpha.star.tuning <- tuning$alpha.star
if (length(alpha.star.tuning) != 1) {
stop("error: alpha.star tuning must be a single value")
}
alpha.star.tuning <- rep(alpha.star.tuning, n.det.re)
} else {
alpha.star.tuning <- NULL
}
if (family == 'NB') {
# kappa ---------------------------
if(!"kappa" %in% names(tuning)) {
stop("error: kappa must be specified in tuning value list")
}
kappa.tuning <- tuning$kappa
if (length(kappa.tuning) != 1) {
stop("kappa tuning must be either a single value")
}
} else {
kappa.tuning <- NULL
}
}
tuning.c <- log(c(beta.tuning, alpha.tuning,
beta.star.tuning, alpha.star.tuning,
kappa.tuning))
curr.chain <- 1
# Get max y values for N update -----------------------------------------
y.max <- apply(y.mat, 1, max, na.rm = TRUE)
# Other miscellaneous ---------------------------------------------------
# For prediction with random slopes
re.cols <- list()
if (p.abund.re > 0) {
split.names <- strsplit(x.re.names, "[-]")
for (j in 1:p.abund.re) {
re.cols[[j]] <- split.names[[j]][1]
names(re.cols)[j] <- split.names[[j]][2]
}
}
re.det.cols <- list()
if (p.det.re > 0) {
split.names <- strsplit(x.p.re.names, "[-]")
for (j in 1:p.det.re) {
re.det.cols[[j]] <- split.names[[j]][1]
names(re.det.cols)[j] <- split.names[[j]][2]
}
}
# Set storage for all variables ---------------------------------------
storage.mode(y) <- "double"
storage.mode(N.inits) <- "double"
storage.mode(X) <- "double"
storage.mode(X.p) <- "double"
storage.mode(y.max) <- "double"
storage.mode(offset) <- 'double'
consts <- c(J, n.obs, p.abund, p.abund.re, n.abund.re,
p.det, p.det.re, n.det.re)
storage.mode(consts) <- "integer"
storage.mode(K) <- "double"
storage.mode(beta.inits) <- "double"
storage.mode(alpha.inits) <- "double"
storage.mode(kappa.inits) <- "double"
storage.mode(N.long.indx) <- "integer"
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(mu.alpha) <- "double"
storage.mode(Sigma.alpha) <- "double"
storage.mode(kappa.a) <- "double"
storage.mode(kappa.b) <- "double"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(tuning.c) <- "double"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
chain.info <- c(curr.chain, n.chains)
storage.mode(chain.info) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
storage.mode(n.post.samples) <- "integer"
samples.info <- c(n.burn, n.thin, n.post.samples)
storage.mode(samples.info) <- "integer"
# For detection random effects
storage.mode(X.p.re) <- "integer"
storage.mode(X.p.random) <- "double"
alpha.level.indx <- sort(unique(c(X.p.re)))
storage.mode(alpha.level.indx) <- "integer"
storage.mode(n.det.re.long) <- "integer"
storage.mode(sigma.sq.p.inits) <- "double"
storage.mode(sigma.sq.p.a) <- "double"
storage.mode(sigma.sq.p.b) <- "double"
storage.mode(alpha.star.inits) <- "double"
storage.mode(alpha.star.indx) <- "integer"
# For abundance random effects
storage.mode(X.re) <- "integer"
storage.mode(X.random) <- "double"
beta.level.indx <- sort(unique(c(X.re)))
storage.mode(beta.level.indx) <- "integer"
storage.mode(sigma.sq.mu.inits) <- "double"
storage.mode(sigma.sq.mu.a) <- "double"
storage.mode(sigma.sq.mu.b) <- "double"
storage.mode(beta.star.inits) <- "double"
storage.mode(beta.star.indx) <- "integer"
# NB = 1, Poisson = 0
family.c <- ifelse(family == 'NB', 1, 0)
storage.mode(family.c) <- "integer"
# Fit the model -------------------------------------------------------
out.tmp <- list()
out <- list()
for (i in 1:n.chains) {
# Change initial values if i > 1
if ((i > 1) & (!fix.inits)) {
beta.inits <- rnorm(p.abund, 0, 1)
alpha.inits <- rnorm(p.det, 0, 1)
if (p.abund.re > 0) {
sigma.sq.mu.inits <- runif(p.abund.re, 0.05, 2)
beta.star.inits <- rnorm(n.abund.re, 0, sqrt(sigma.sq.mu.inits[beta.star.indx + 1]))
}
if (p.det.re > 0) {
sigma.sq.p.inits <- runif(p.det.re, 0.05, 2)
alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
}
if (family == 'NB') {
kappa.inits <- runif(1, kappa.a, kappa.b)
}
}
storage.mode(chain.info) <- "integer"
# Run the model in C
out.tmp[[i]] <- .Call("NMix", y, X, X.p, X.re, X.p.re, X.random, X.p.random,
y.max, consts, K, n.abund.re.long,
n.det.re.long, beta.inits, alpha.inits, kappa.inits,
sigma.sq.mu.inits, sigma.sq.p.inits, beta.star.inits,
alpha.star.inits, N.inits, N.long.indx, beta.star.indx,
beta.level.indx, alpha.star.indx, alpha.level.indx,
mu.beta, Sigma.beta, mu.alpha, Sigma.alpha,
sigma.sq.mu.a, sigma.sq.mu.b,
sigma.sq.p.a, sigma.sq.p.b, kappa.a, kappa.b,
tuning.c, n.batch, batch.length, accept.rate,
n.omp.threads, verbose, n.report, samples.info, chain.info, family.c,
offset)
chain.info[1] <- chain.info[1] + 1
} # i
# Calculate R-Hat ---------------
out <- list()
out$rhat <- list()
if (n.chains > 1) {
# as.vector removes the "Upper CI" when there is only 1 variable.
out$rhat$beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$alpha <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$alpha.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
if (p.det.re > 0) {
out$rhat$sigma.sq.p <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.p.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
if (p.abund.re > 0) {
out$rhat$sigma.sq.mu <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.mu.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
if (family == 'NB') {
out$rhat$kappa <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$kappa.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
} else {
out$rhat$beta <- rep(NA, p.abund)
out$rhat$kappa <- NA
out$rhat$alpha <- rep(NA, p.det)
if (p.det.re > 0) {
out$rhat$sigma.sq.p <- rep(NA, p.det.re)
}
if (p.abund.re > 0) {
out$rhat$sigma.sq.mu <- rep(NA, p.abund.re)
}
}
# Put everything into MCMC objects
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- x.names
out$alpha.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$alpha.samples))))
colnames(out$alpha.samples) <- x.p.names
if (family == 'NB') {
out$kappa.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$kappa.samples))))
colnames(out$kappa.samples) <- c("kappa")
}
out$N.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$N.samples))))
out$mu.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$mu.samples))))
if (p.abund.re > 0) {
out$sigma.sq.mu.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.mu.samples))))
colnames(out$sigma.sq.mu.samples) <- x.re.names
out$beta.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
tmp.names <- unlist(re.level.names)
beta.star.names <- paste(rep(x.re.names, n.abund.re.long), tmp.names, sep = '-')
colnames(out$beta.star.samples) <- beta.star.names
out$re.level.names <- re.level.names
}
if (p.det.re > 0) {
out$sigma.sq.p.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.p.samples))))
colnames(out$sigma.sq.p.samples) <- x.p.re.names
out$alpha.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$alpha.star.samples))))
tmp.names <- unlist(p.re.level.names)
alpha.star.names <- paste(rep(x.p.re.names, n.det.re.long), tmp.names, sep = '-')
colnames(out$alpha.star.samples) <- alpha.star.names
out$p.re.level.names <- p.re.level.names
}
# Calculate effective sample sizes
out$ESS <- list()
out$ESS$beta <- effectiveSize(out$beta.samples)
if (family == 'NB') {
out$ESS$kappa <- effectiveSize(out$kappa.samples)
}
out$ESS$alpha <- effectiveSize(out$alpha.samples)
if (p.det.re > 0) {
out$ESS$sigma.sq.p <- effectiveSize(out$sigma.sq.p.samples)
}
if (p.abund.re > 0) {
out$ESS$sigma.sq.mu <- effectiveSize(out$sigma.sq.mu.samples)
}
out$X <- X
out$X.p <- X.p
out$X.re <- X.re
out$X.p.re <- X.p.re
out$X.p.random <- X.p.random
out$y <- y.mat
out$offset <- offset
out$n.samples <- n.samples
out$call <- cl
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
out$re.cols <- re.cols
out$re.det.cols <- re.det.cols
out$dist <- family
if (p.det.re > 0) {
out$pRE <- TRUE
} else {
out$pRE <- FALSE
}
if (p.abund.re > 0) {
out$muRE <- TRUE
} else {
out$muRE <- FALSE
}
class(out) <- "NMix"
out$run.time <- proc.time() - ptm
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.