Nothing
sfMsAbund <- function(formula, data, inits, priors,
tuning, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.factors,
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, save.fitted = TRUE, ...){
ptm <- proc.time()
if (!(family) %in% c('Poisson', 'NB', 'Gaussian', 'zi-Gaussian')) {
stop("family must be either 'Poisson', 'NB', 'Gaussian', or 'zi-Gaussian'")
}
if (family %in% c('Gaussian', 'zi-Gaussian')) {
sfMsAbundGaussian(formula, data, inits, priors, tuning, cov.model,
NNGP, n.neighbors, search.type, n.factors, n.batch,
batch.length, accept.rate, family, n.omp.threads,
verbose, n.report, n.burn, n.thin, n.chains, save.fitted)
} else {
# Functions -----------------------------------------------------------
logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
rigamma <- function(n, a, b){
1/rgamma(n = n, shape = a, rate = b)
}
# Make it look nice
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing to run the model\n");
cat("----------------------------------------\n");
}
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Call ----------------------------------------------------------------
# Returns a call in which all of the specified arguments are
# specified by their full names.
cl <- match.call()
# Some initial checks -------------------------------------------------
# Only implemented for NNGP
if (!NNGP) {
stop("error: sfMsAbund is currently only implemented for NNGPs, not full Gaussian Processes. Please set NNGP = TRUE.")
}
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
if (!'y' %in% names(data)) {
stop("error: count data y must be specified in data")
}
if (!(length(dim(data$y)) %in% c(2, 3))) {
stop("error: count data y must be a two or three-dimensional array with dimensions corresponding to species, sites, and replicates.")
}
sp.names <- attr(data$y, 'dimnames')[[1]]
if (length(dim(data$y)) == 2) {
data$y <- array(data$y, dim = c(nrow(data$y), ncol(data$y), 1))
dimnames(data$y)[[1]] <- sp.names
}
y <- data$y
# Offset
if ('offset' %in% names(data)) {
offset <- data$offset
if (length(offset) == 1) {
offset <- matrix(offset, ncol(y), dim(y)[3])
} else if (length(dim(offset)) == 1) { # Value for each site
if (length(offset) != ncol(y)) {
stop(paste0("offset must be a single value, vector of length ", ncol(y), " or a matrix with ",
ncol(y), " rows and ", dim(y)[3], " columns."))
}
offset <- matrix(offset, ncol(y), dim(y)[3])
} else if (length(dim(offset)) == 2) { # Value for each site/obs
if (nrow(offset) != ncol(y) | ncol(offset) != dim(y)[3]) {
stop(paste0("offset must be a single value, vector of length ", ncol(y), " or a matrix with ",
ncol(y), " rows and ", dim(y)[3], " columns."))
}
}
} else {
offset <- matrix(1, ncol(y), dim(y)[3])
}
if (!'covs' %in% names(data)) {
if (formula == ~ 1) {
if (verbose) {
message("abundance covariates (covs) not specified in data.\nAssuming intercept only abundance model.\n")
}
data$covs <- list(int = array(1, dim = c(dim(y)[2], dim(y)[3])))
} else {
stop("error: covs must be specified in data for an abundance model with covariates")
}
}
if (!is.list(data$covs)) {
stop("error: covs must be a list of matrices, data frames, and/or vectors")
}
if (!'coords' %in% names(data)) {
stop("error: coords must be specified in data for a spatial abundance model.")
}
if (!is.matrix(data$coords) & !is.data.frame(data$coords)) {
stop("error: coords must be a matrix or data frame")
}
coords <- as.matrix(data$coords)
if (missing(n.batch)) {
stop("error: must specify number of MCMC batches")
}
if (missing(batch.length)) {
stop("error: must specify length of each MCMC batch")
}
n.samples <- n.batch * batch.length
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
# Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
}
if (missing(n.factors)) {
stop("error: n.factors must be specified for a spatial factor GLMM")
}
if (family == 'NB' & verbose) {
message('**NOTE**: spatial negative binomial models can be difficult to\nestimate as they contain two forms of overdispersion. If experiencing\nvery poor mixing/convergence of MCMC chains (particularly kappa and phi),\nconsider using a spatial Poisson model or more informative\npriors on kappa or phi.\n')
}
# Neighbors and Ordering ----------------------------------------------
if (NNGP) {
u.search.type <- 2
## Order by x column. Could potentially allow this to be user defined.
ord <- order(coords[,1])
# Reorder everything to align with NN ordering
y <- y[, ord, , drop = FALSE]
offset <- offset[ord, , drop = FALSE]
coords <- coords[ord, , drop = FALSE]
# Covariates
for (i in 1:length(data$covs)) {
if (!is.null(dim(data$covs[[i]]))) {
data$covs[[i]] <- data$covs[[i]][ord, , drop = FALSE]
} else {
data$covs[[i]] <- data$covs[[i]][ord]
}
}
}
# For later
y.mat <- y
offset.mat <- offset
# First subset covariates to only use those that are included in the analysis.
# Get occurrence covariates in proper format
# Subset covariates to only use those that are included in the analysis
data$covs <- data$covs[names(data$covs) %in% all.vars(formula)]
# Null model support
if (length(data$covs) == 0) {
data$covs <- list(int = matrix(1, nrow = dim(y)[2], ncol = dim(y)[3]))
}
# Ordered by rep, then site within rep
data$covs <- data.frame(lapply(data$covs, function(a) unlist(c(a))))
# Check if only site-level covariates are included
if (nrow(data$covs) == dim(y)[2]) {
data$covs <- as.data.frame(lapply(data$covs, rep, dim(y)[3]))
}
# Check whether random effects are sent in as numeric, and
# return error if they are.
# Abundance -------------------------
if (!is.null(findbars(formula))) {
abund.re.names <- unique(unlist(sapply(findbars(formula), all.vars)))
for (i in 1:length(abund.re.names)) {
if (is(data$covs[, abund.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", abund.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$covs[, abund.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", abund.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Checking missing values ---------------------------------------------
# y -------------------------------
y.na.test <- apply(y.mat, c(1, 2), function(a) sum(!is.na(a)))
if (sum(y.na.test == 0) > 0) {
stop("error: some sites in y have all missing detection histories. Remove these sites from all objects in the 'data' argument, then use 'predict' to obtain predictions at these locations if desired.")
}
# covs ------------------------
for (i in 1:ncol(data$covs)) {
# Note that this assumes the same detection history for each species.
if (sum(is.na(data$covs[, i])) > sum(is.na(y.mat[1, , ]))) {
stop("error: some elements in covs have missing values where there is an observed data value in y. Please either replace the NA values in covs with non-missing values (e.g., mean imputation) or set the corresponding values in y to NA where the covariate is missing.")
}
}
# Misalignment between y and covs
y.missing <- which(is.na(y[1, , ]))
covs.missing <- lapply(data$covs, function(a) which(is.na(a)))
for (i in 1:length(covs.missing)) {
tmp.indx <- !(y.missing %in% covs.missing[[i]])
if (sum(tmp.indx) > 0) {
if (i == 1 & verbose) {
message("There are missing values in data$y with corresponding non-missing values in data$covs.\nRemoving these site/replicate combinations for fitting the model.")
}
data$covs[y.missing, i] <- NA
}
}
# Remove missing values from covs in order to ensure formula parsing
# works when random slopes are provided.
tmp <- apply(data$covs, 1, function (a) sum(is.na(a)))
data$covs <- as.data.frame(data$covs[tmp == 0, , drop = FALSE])
# Check save.fitted ---------------------------------------------------
if (!(save.fitted %in% c(TRUE, FALSE))) {
stop("save.fitted must be either TRUE or FALSE")
}
# Formula -------------------------------------------------------------
# Abundance -----------------------
if (missing(formula)) {
stop("error: formula must be specified")
}
if (is(formula, 'formula')) {
tmp <- parseFormula(formula, data$covs)
X <- as.matrix(tmp[[1]])
X.re <- as.matrix(tmp[[4]])
x.re.names <- colnames(X.re)
x.names <- tmp[[2]]
X.random <- as.matrix(tmp[[5]])
x.random.names <- colnames(X.random)
} else {
stop("error: formula is misspecified")
}
# Get RE level names
re.level.names <- lapply(data$covs[, x.re.names, drop = FALSE],
function (a) sort(unique(a)))
x.re.names <- x.random.names
# Extract data from inputs --------------------------------------------
# Number of species
n.sp <- dim(y)[1]
# Number of latent factors
q <- n.factors
# Number of abundance parameters
p.abund <- ncol(X)
# Number of abundance random effect parameters
p.abund.re <- ncol(X.re)
# Number of latent abundance random effect values
n.abund.re <- length(unlist(apply(X.re, 2, unique)))
n.abund.re.long <- apply(X.re, 2, function(a) length(unique(a)))
# Number of sites
J <- nrow(coords)
# Number of replicate surveys
# Note this assumes equivalent detection histories for all species.
# May want to change this at some point.
n.rep <- apply(y.mat[1, , , drop = FALSE], 2, function(a) sum(!is.na(a)))
K.max <- dim(y.mat)[3]
# Because I like K better than n.rep
K <- n.rep
# Get indices to map N to y -------------------------------------------
site.indx <- rep(1:J, dim(y.mat)[3])
site.indx <- site.indx[!is.na(c(y.mat[1, , ]))]
# Subtract 1 for indices in C
site.indx <- site.indx - 1
# y is stored in the following order: species, site, visit
y <- c(y)
offset <- c(offset)
# Assumes the missing data are constant across species, which seems likely,
# but may eventually need some updating.
names.long <- which(!is.na(c(y.mat[1, , ])))
# Only need to check this when there are observation level covariates.
if (nrow(X) == length(y) / n.sp) {
X <- X[!is.na(c(y.mat[1, , ])), , drop = FALSE]
}
if (nrow(X.re) == length(y) / n.sp & p.abund.re > 0) {
X.re <- X.re[!is.na(c(y.mat[1, , ])), , drop = FALSE]
}
if (nrow(X.random) == length(y) / n.sp & p.abund.re > 0) {
X.random <- X.random[!is.na(c(y.mat[1, , ])), , drop = FALSE]
}
y <- y[!is.na(y)]
offset <- offset[!is.na(c(y.mat[1, , ]))]
# Number of pseudoreplicates
n.obs <- nrow(X)
# Get random effect matrices all set ----------------------------------
X.re <- X.re - 1
if (p.abund.re > 1) {
for (j in 2:p.abund.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
}
}
# Separate out priors -------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# Independent beta parameters -----
if ('independent.betas' %in% names(priors)) {
if (priors$independent.betas == TRUE) {
message("Beta parameters will be estimated independently\n")
ind.betas <- TRUE
} else if (priors$independent.betas == FALSE) {
ind.betas <- FALSE
}
} else {
ind.betas <- FALSE
}
# beta.comm -----------------------
if ("beta.comm.normal" %in% names(priors)) {
if (!is.list(priors$beta.comm.normal) | length(priors$beta.comm.normal) != 2) {
stop("error: beta.comm.normal must be a list of length 2")
}
mu.beta.comm <- priors$beta.comm.normal[[1]]
sigma.beta.comm <- priors$beta.comm.normal[[2]]
if (length(mu.beta.comm) != p.abund & length(mu.beta.comm) != 1) {
if (p.abund == 1) {
stop(paste("error: beta.comm.normal[[1]] must be a vector of length ",
p.abund, " with elements corresponding to beta.comms' mean", sep = ""))
} else {
stop(paste("error: beta.comm.normal[[1]] must be a vector of length ",
p.abund, " or 1 with elements corresponding to beta.comms' mean", sep = ""))
}
}
if (length(sigma.beta.comm) != p.abund & length(sigma.beta.comm) != 1) {
if (p.abund == 1) {
stop(paste("error: beta.comm.normal[[2]] must be a vector of length ",
p.abund, " with elements corresponding to beta.comms' variance", sep = ""))
} else {
stop(paste("error: beta.comm.normal[[2]] must be a vector of length ",
p.abund, " or 1 with elements corresponding to beta.comms' variance", sep = ""))
}
}
if (length(sigma.beta.comm) != p.abund) {
sigma.beta.comm <- rep(sigma.beta.comm, p.abund)
}
if (length(mu.beta.comm) != p.abund) {
mu.beta.comm <- rep(mu.beta.comm, p.abund)
}
Sigma.beta.comm <- sigma.beta.comm * diag(p.abund)
} else {
if (verbose & !ind.betas) {
message("No prior specified for beta.comm.normal.\nSetting prior mean to 0 and prior variance to 100\n")
}
mu.beta.comm <- rep(0, p.abund)
sigma.beta.comm <- rep(100, p.abund)
Sigma.beta.comm <- diag(p.abund) * 100
}
# tau.sq.beta -----------------------
if ("tau.sq.beta.ig" %in% names(priors)) {
if (!is.list(priors$tau.sq.beta.ig) | length(priors$tau.sq.beta.ig) != 2) {
stop("error: tau.sq.beta.ig must be a list of length 2")
}
tau.sq.beta.a <- priors$tau.sq.beta.ig[[1]]
tau.sq.beta.b <- priors$tau.sq.beta.ig[[2]]
if (length(tau.sq.beta.a) != p.abund & length(tau.sq.beta.a) != 1) {
if (p.abund == 1) {
stop(paste("error: tau.sq.beta.ig[[1]] must be a vector of length ",
p.abund, " with elements corresponding to tau.sq.betas' shape", sep = ""))
} else {
stop(paste("error: tau.sq.beta.ig[[1]] must be a vector of length ",
p.abund, " or 1 with elements corresponding to tau.sq.betas' shape", sep = ""))
}
}
if (length(tau.sq.beta.b) != p.abund & length(tau.sq.beta.b) != 1) {
if (p.abund == 1) {
stop(paste("error: tau.sq.beta.ig[[2]] must be a vector of length ",
p.abund, " with elements corresponding to tau.sq.betas' scale", sep = ""))
} else {
stop(paste("error: tau.sq.beta.ig[[2]] must be a vector of length ",
p.abund, " or 1 with elements corresponding to tau.sq.betas' scale", sep = ""))
}
}
if (length(tau.sq.beta.a) != p.abund) {
tau.sq.beta.a <- rep(tau.sq.beta.a, p.abund)
}
if (length(tau.sq.beta.b) != p.abund) {
tau.sq.beta.b <- rep(tau.sq.beta.b, p.abund)
}
} else {
if (verbose & !ind.betas) {
message("No prior specified for tau.sq.beta.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
tau.sq.beta.a <- rep(0.1, p.abund)
tau.sq.beta.b <- rep(0.1, p.abund)
}
# sigma.sq.mu --------------------
if (p.abund.re > 0) {
if ("sigma.sq.mu.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.mu.ig) | length(priors$sigma.sq.mu.ig) != 2) {
stop("error: sigma.sq.mu.ig must be a list of length 2")
}
sigma.sq.mu.a <- priors$sigma.sq.mu.ig[[1]]
sigma.sq.mu.b <- priors$sigma.sq.mu.ig[[2]]
if (length(sigma.sq.mu.a) != p.abund.re & length(sigma.sq.mu.a) != 1) {
if (p.abund.re == 1) {
stop(paste("error: sigma.sq.mu.ig[[1]] must be a vector of length ",
p.abund.re, " with elements corresponding to sigma.sq.mus' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.mu.ig[[1]] must be a vector of length ",
p.abund.re, " or 1 with elements corresponding to sigma.sq.mus' shape", sep = ""))
}
}
if (length(sigma.sq.mu.b) != p.abund.re & length(sigma.sq.mu.b) != 1) {
if (p.abund.re == 1) {
stop(paste("error: sigma.sq.mu.ig[[2]] must be a vector of length ",
p.abund.re, " with elements corresponding to sigma.sq.mus' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.mu.ig[[2]] must be a vector of length ",
p.abund.re, " or 1with elements corresponding to sigma.sq.mus' scale", sep = ""))
}
}
if (length(sigma.sq.mu.a) != p.abund.re) {
sigma.sq.mu.a <- rep(sigma.sq.mu.a, p.abund.re)
}
if (length(sigma.sq.mu.b) != p.abund.re) {
sigma.sq.mu.b <- rep(sigma.sq.mu.b, p.abund.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.mu.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.mu.a <- rep(0.1, p.abund.re)
sigma.sq.mu.b <- rep(0.1, p.abund.re)
}
} else {
sigma.sq.mu.a <- 0
sigma.sq.mu.b <- 0
}
# kappa -----------------------------
if (family == 'NB') {
if ("kappa.unif" %in% names(priors)) {
if (!is.list(priors$kappa.unif) | length(priors$kappa.unif) != 2) {
stop("error: kappa.unif must be a list of length 2")
}
kappa.a <- priors$kappa.unif[[1]]
kappa.b <- priors$kappa.unif[[2]]
if (length(kappa.a) != n.sp & length(kappa.a) != 1) {
stop(paste("error: kappa.unif[[1]] must be a vector of length ",
n.sp, " or 1 with elements corresponding to kappas' lower bound for each species", sep = ""))
}
if (length(kappa.b) != n.sp & length(kappa.b) != 1) {
stop(paste("error: kappa.unif[[2]] must be a vector of length ",
n.sp, " or 1 with elements corresponding to kappas' upper bound for each species", sep = ""))
}
if (length(kappa.a) != n.sp) {
kappa.a <- rep(kappa.a, n.sp)
}
if (length(kappa.b) != n.sp) {
kappa.b <- rep(kappa.b, n.sp)
}
} else {
if (verbose) {
message("No prior specified for kappa.unif.\nSetting uniform bounds of 0 and 100.\n")
}
kappa.a <- rep(0, n.sp)
kappa.b <- rep(100, n.sp)
}
} else {
kappa.a <- rep(0, n.sp)
kappa.b <- rep(0, n.sp)
}
# phi -----------------------------
# Get distance matrix which is used if priors are not specified
if ("phi.unif" %in% names(priors)) {
if (!is.list(priors$phi.unif) | length(priors$phi.unif) != 2) {
stop("error: phi.unif must be a list of length 2")
}
phi.a <- priors$phi.unif[[1]]
phi.b <- priors$phi.unif[[2]]
if (length(phi.a) != q & length(phi.a) != 1) {
stop(paste("error: phi.unif[[1]] must be a vector of length ",
q, " or 1 with elements corresponding to phis' lower bound for each latent factor", sep = ""))
}
if (length(phi.b) != q & length(phi.b) != 1) {
stop(paste("error: phi.unif[[2]] must be a vector of length ",
q, " or 1 with elements corresponding to phis' upper bound for each latent factor", sep = ""))
}
if (length(phi.a) != q) {
phi.a <- rep(phi.a, q)
}
if (length(phi.b) != q) {
phi.b <- rep(phi.b, q)
}
} else {
if (verbose) {
message("No prior specified for phi.unif.\nSetting uniform bounds based on the range of observed spatial coordinates.\n")
}
coords.D <- iDist(coords)
phi.a <- rep(3 / max(coords.D), q)
phi.b <- rep(3 / sort(unique(c(coords.D)))[2], q)
}
# nu -----------------------------
if (cov.model == "matern") {
if (!"nu.unif" %in% names(priors)) {
stop("error: nu.unif must be specified in priors value list")
}
nu.a <- priors$nu.unif[[1]]
nu.b <- priors$nu.unif[[2]]
if (!is.list(priors$nu.unif) | length(priors$nu.unif) != 2) {
stop("error: nu.unif must be a list of length 2")
}
if (length(nu.a) != q & length(nu.a) != 1) {
stop(paste("error: nu.unif[[1]] must be a vector of length ",
q, " or 1 with elements corresponding to nus' lower bound for each latent factor", sep = ""))
}
if (length(nu.b) != q & length(nu.b) != 1) {
stop(paste("error: nu.unif[[2]] must be a vector of length ",
q, " or 1 with elements corresponding to nus' upper bound for each latent factor", sep = ""))
}
if (length(nu.a) != q) {
nu.a <- rep(nu.a, q)
}
if (length(nu.b) != q) {
nu.b <- rep(nu.b, q)
}
} else {
nu.a <- rep(0, q)
nu.b <- rep(0, q)
}
# Starting values -----------------------------------------------------
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
# beta.comm -----------------------
if ("beta.comm" %in% names(inits)) {
beta.comm.inits <- inits[["beta.comm"]]
if (length(beta.comm.inits) != p.abund & length(beta.comm.inits) != 1) {
if (p.abund == 1) {
stop(paste("error: initial values for beta.comm must be of length ", p.abund,
sep = ""))
} else {
stop(paste("error: initial values for beta.comm must be of length ", p.abund,
, " or 1", sep = ""))
}
}
if (length(beta.comm.inits) != p.abund) {
beta.comm.inits <- rep(beta.comm.inits, p.abund)
}
} else {
beta.comm.inits <- rnorm(p.abund, 0, 1)
if (verbose) {
message('beta.comm is not specified in initial values.\nSetting initial values to random values from a standard normal distribution\n')
}
}
# tau.sq.beta ------------------------
if ("tau.sq.beta" %in% names(inits)) {
tau.sq.beta.inits <- inits[["tau.sq.beta"]]
if (length(tau.sq.beta.inits) != p.abund & length(tau.sq.beta.inits) != 1) {
if (p.abund == 1) {
stop(paste("error: initial values for tau.sq.beta must be of length ", p.abund,
sep = ""))
} else {
stop(paste("error: initial values for tau.sq.beta must be of length ", p.abund,
" or 1", sep = ""))
}
}
if (length(tau.sq.beta.inits) != p.abund) {
tau.sq.beta.inits <- rep(tau.sq.beta.inits, p.abund)
}
} else {
tau.sq.beta.inits <- runif(p.abund, 0.05, 1)
if (verbose) {
message('tau.sq.beta is not specified in initial values.\nSetting initial values to random values between 0.05 and 1\n')
}
}
# beta ----------------------------
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (is.matrix(beta.inits)) {
if (ncol(beta.inits) != p.abund | nrow(beta.inits) != n.sp) {
stop(paste("error: initial values for beta must be a matrix with dimensions ",
n.sp, "x", p.abund, " or a single numeric value", sep = ""))
}
}
if (!is.matrix(beta.inits) & length(beta.inits) != 1) {
stop(paste("error: initial values for beta must be a matrix with dimensions ",
n.sp, " x ", p.abund, " or a single numeric value", sep = ""))
}
if (length(beta.inits) == 1) {
beta.inits <- matrix(beta.inits, n.sp, p.abund)
}
} else {
beta.inits <- matrix(rnorm(n.sp * p.abund, beta.comm.inits, sqrt(tau.sq.beta.inits)), n.sp, p.abund)
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from the community-level normal distribution\n')
}
}
# sigma.sq.mu -------------------
if (p.abund.re > 0) {
if ("sigma.sq.mu" %in% names(inits)) {
sigma.sq.mu.inits <- inits[["sigma.sq.mu"]]
if (length(sigma.sq.mu.inits) != p.abund.re & length(sigma.sq.mu.inits) != 1) {
if (p.abund.re == 1) {
stop(paste("error: initial values for sigma.sq.mu must be of length ", p.abund.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.mu must be of length ", p.abund.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.mu.inits) != p.abund.re) {
sigma.sq.mu.inits <- rep(sigma.sq.mu.inits, p.abund.re)
}
} else {
sigma.sq.mu.inits <- runif(p.abund.re, 0.05, 1)
if (verbose) {
message("sigma.sq.mu is not specified in initial values.\nSetting initial values to random values between 0.05 and 1\n")
}
}
beta.star.indx <- rep(0:(p.abund.re - 1), n.abund.re.long)
beta.star.inits <- rnorm(n.abund.re, 0, sqrt(sigma.sq.mu.inits[beta.star.indx + 1]))
# Starting values for all species
beta.star.inits <- rep(beta.star.inits, n.sp)
} else {
sigma.sq.mu.inits <- 0
beta.star.indx <- 0
beta.star.inits <- 0
}
# kappa -----------------------------
# ORDER: a length n.sp vector ordered by species in the detection-nondetection data.
if (family == 'NB') {
if ("kappa" %in% names(inits)) {
kappa.inits <- inits[["kappa"]]
if (length(kappa.inits) != n.sp & length(kappa.inits) != 1) {
stop(paste("error: initial values for kappa must be of length ", n.sp, " or 1",
sep = ""))
}
if (length(kappa.inits) != n.sp) {
kappa.inits <- rep(kappa.inits, n.sp)
}
} else {
kappa.inits <- runif(n.sp, kappa.a, kappa.b)
if (verbose) {
message("kappa is not specified in initial values.\nSetting initial value to random values from the prior distribution\n")
}
}
} else {
kappa.inits <- rep(0, n.sp)
}
# phi -----------------------------
# ORDER: a length N vector ordered by species in the detection-nondetection data.
if ("phi" %in% names(inits)) {
phi.inits <- inits[["phi"]]
if (length(phi.inits) != q & length(phi.inits) != 1) {
stop(paste("error: initial values for phi must be of length ", q, " or 1",
sep = ""))
}
if (length(phi.inits) != q) {
phi.inits <- rep(phi.inits, q)
}
} else {
phi.inits <- runif(q, phi.a, phi.b)
if (verbose) {
message("phi is not specified in initial values.\nSetting initial value to random values from the prior distribution\n")
}
}
# nu ------------------------
if ("nu" %in% names(inits)) {
nu.inits <- inits[["nu"]]
if (length(nu.inits) != q & length(nu.inits) != 1) {
stop(paste("error: initial values for nu must be of length ", q, " or 1",
sep = ""))
}
if (length(nu.inits) != q) {
nu.inits <- rep(nu.inits, q)
}
} else {
if (cov.model == 'matern') {
if (verbose) {
message("nu is not specified in initial values.\nSetting initial values to random values from the prior distribution\n")
}
nu.inits <- runif(q, nu.a, nu.b)
} else {
nu.inits <- rep(0, q)
}
}
# lambda ----------------------------
# ORDER: an n.sp x q matrix sent in as a column-major vector, which is ordered by
# factor, then species within factor.
if ("lambda" %in% names(inits)) {
lambda.inits <- inits[["lambda"]]
if (!is.matrix(lambda.inits)) {
stop(paste("error: initial values for lambda must be a matrix with dimensions ",
n.sp, " x ", q, sep = ""))
}
if (nrow(lambda.inits) != n.sp | ncol(lambda.inits) != q) {
stop(paste("error: initial values for lambda must be a matrix with dimensions ",
n.sp, " x ", q, sep = ""))
}
if (!all.equal(diag(lambda.inits), rep(1, q))) {
stop("error: diagonal of inits$lambda matrix must be all 1s")
}
if (sum(lambda.inits[upper.tri(lambda.inits)]) != 0) {
stop("error: upper triangle of inits$lambda must be all 0s")
}
} else {
lambda.inits <- matrix(0, n.sp, q)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- 0
if (verbose) {
message("lambda is not specified in initial values.\nSetting initial values of the lower triangle to 0\n")
}
# lambda.inits are organized by factor, then by species. This is necessary for working
# with dgemv.
lambda.inits <- c(lambda.inits)
}
# w -----------------------------
if ("w" %in% names(inits)) {
w.inits <- inits[["w"]]
if (!is.matrix(w.inits)) {
stop(paste("error: initial values for w must be a matrix with dimensions ",
q, " x ", J, sep = ""))
}
if (nrow(w.inits) != q | ncol(w.inits) != J) {
stop(paste("error: initial values for w must be a matrix with dimensions ",
q, " x ", J, sep = ""))
}
if (NNGP) {
w.inits <- w.inits[, ord]
}
} else {
w.inits <- matrix(0, q, J)
if (verbose) {
message("w is not specified in initial values.\nSetting initial value to 0\n")
}
}
# Should initial values be fixed --
if ("fix" %in% names(inits)) {
fix.inits <- inits[["fix"]]
if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
stop(paste("error: inits$fix must take value TRUE or FALSE"))
}
} else {
fix.inits <- FALSE
}
if (verbose & fix.inits & (n.chains > 1)) {
message("Fixing initial values across all chains\n")
}
# Covariance Model ----------------------------------------------------
# Order must match util.cpp spCor.
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")}
# Obo for cov model lookup on c side
cov.model.indx <- which(cov.model == cov.model.names) - 1
# Get tuning values ---------------------------------------------------
# Keep this in there just for consistency
sigma.sq.tuning <- rep(0, q)
if (missing(tuning)) {
beta.tuning <- rep(1, p.abund * n.sp)
beta.star.tuning <- rep(1, n.abund.re * n.sp)
kappa.tuning <- rep(1, n.sp)
phi.tuning <- rep(1, q)
if (cov.model == 'matern') {
nu.tuning <- rep(1, q)
} else {
nu.tuning <- NULL
}
w.tuning <- rep(1, J * q)
lambda.tuning <- rep(1, n.sp * q)
} else {
names(tuning) <- tolower(names(tuning))
# beta ---------------------------
if(!"beta" %in% names(tuning)) {
stop("error: beta must be specified in tuning value list")
}
beta.tuning <- tuning$beta
if (length(beta.tuning) != 1 & length(beta.tuning) != p.abund * n.sp) {
stop(paste("error: beta tuning must be a single value or a vector of length ",
p.abund * n.sp, sep = ''))
}
if (length(beta.tuning) == 1) {
beta.tuning <- rep(beta.tuning, p.abund * n.sp)
}
if (p.abund.re > 0) {
# beta.star ---------------------------
if(!"beta.star" %in% names(tuning)) {
stop("error: beta.star must be specified in tuning value list")
}
beta.star.tuning <- tuning$beta.star
if (length(beta.star.tuning) != 1) {
stop("error: beta.star tuning must be a single value")
}
beta.star.tuning <- rep(beta.star.tuning, n.abund.re * n.sp)
} else {
beta.star.tuning <- NULL
}
# kappa ---------------------------
if (family == 'NB') {
if(!"kappa" %in% names(tuning)) {
stop("error: kappa must be specified in tuning value list")
}
kappa.tuning <- tuning$kappa
if (length(kappa.tuning) == 1) {
kappa.tuning <- rep(tuning$kappa, n.sp)
} else if (length(kappa.tuning) != n.sp) {
stop(paste("error: kappa tuning must be either a single value or a vector of length ",
n.sp, sep = ""))
}
} else {
kappa.tuning <- NULL
}
# phi ---------------------------
if(!"phi" %in% names(tuning)) {
stop("error: phi must be specified in tuning value list")
}
phi.tuning <- tuning$phi
if (length(phi.tuning) == 1) {
phi.tuning <- rep(tuning$phi, q)
} else if (length(phi.tuning) != q) {
stop(paste("error: phi tuning must be either a single value or a vector of length ",
q, sep = ""))
}
if (cov.model == 'matern') {
# nu --------------------------
if(!"nu" %in% names(tuning)) {
stop("error: nu must be specified in tuning value list")
}
nu.tuning <- tuning$nu
if (length(nu.tuning) == 1) {
nu.tuning <- rep(tuning$nu, q)
} else if (length(nu.tuning) != q) {
stop(paste("error: nu tuning must be either a single value or a vector of length ",
q, sep = ""))
}
} else {
nu.tuning <- NULL
}
# w ---------------------------
if(!"w" %in% names(tuning)) {
stop("error: w must be specified in tuning value list")
}
w.tuning <- tuning$w
if (length(w.tuning) != 1 & length(w.tuning) != J * q) {
stop(paste("error: w tuning must be a single value or a vector of length ",
J * q, sep = ''))
}
if (length(w.tuning) == 1) {
w.tuning <- rep(w.tuning, J * q)
}
# lambda ---------------------------
if(!"lambda" %in% names(tuning)) {
stop("error: lambda must be specified in tuning value list")
}
lambda.tuning <- tuning$lambda
if (length(lambda.tuning) != 1 & length(lambda.tuning) != n.sp * q) {
stop(paste("error: lambda tuning must be a single value or a vector of length ",
n.sp * q, sep = ''))
}
if (length(lambda.tuning) == 1) {
lambda.tuning <- rep(lambda.tuning, n.sp * q)
}
}
tuning.c <- log(c(beta.tuning, sigma.sq.tuning, phi.tuning, nu.tuning, lambda.tuning,
w.tuning, beta.star.tuning, kappa.tuning))
# Other miscellaneous ---------------------------------------------------
# For prediction with random slopes
re.cols <- list()
if (p.abund.re > 0) {
split.names <- strsplit(x.re.names, "[-]")
for (j in 1:p.abund.re) {
re.cols[[j]] <- split.names[[j]][1]
names(re.cols)[j] <- split.names[[j]][2]
}
}
curr.chain <- 1
if (!NNGP) {
stop("error: sfMsAbund is currently only implemented for NNGPs, not full Gaussian Processes. Please set NNGP = TRUE.")
} else {
# Nearest Neighbor Search ---------------------------------------------
if(verbose){
cat("----------------------------------------\n");
cat("\tBuilding the neighbor list\n");
cat("----------------------------------------\n");
}
search.type.names <- c("brute", "cb")
if(!search.type %in% search.type.names){
stop("error: specified search.type '",search.type,
"' is not a valid option; choose from ",
paste(search.type.names, collapse=", ", sep="") ,".")
}
## Indexes
if(search.type == "brute"){
indx <- mkNNIndx(coords, n.neighbors, n.omp.threads)
} else{
indx <- mkNNIndxCB(coords, n.neighbors, n.omp.threads)
}
nn.indx <- indx$nnIndx
nn.indx.lu <- indx$nnIndxLU
nn.indx.run.time <- indx$run.time
if(verbose){
cat("----------------------------------------\n");
cat("Building the neighbors of neighbors list\n");
cat("----------------------------------------\n");
}
indx <- mkUIndx(J, n.neighbors, nn.indx, nn.indx.lu, u.search.type)
u.indx <- indx$u.indx
u.indx.lu <- indx$u.indx.lu
ui.indx <- indx$ui.indx
u.indx.run.time <- indx$run.time
# Set storage for all variables ---------------------------------------
storage.mode(y) <- "double"
storage.mode(X) <- "double"
storage.mode(coords) <- "double"
storage.mode(offset) <- 'double'
consts <- c(n.sp, J, n.obs, p.abund, p.abund.re, n.abund.re, q, ind.betas, save.fitted)
storage.mode(consts) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(kappa.inits) <- "double"
storage.mode(beta.comm.inits) <- "double"
storage.mode(tau.sq.beta.inits) <- "double"
storage.mode(lambda.inits) <- "double"
storage.mode(w.inits) <- "double"
storage.mode(phi.inits) <- "double"
storage.mode(nu.inits) <- "double"
storage.mode(site.indx) <- "integer"
storage.mode(mu.beta.comm) <- "double"
storage.mode(Sigma.beta.comm) <- "double"
storage.mode(kappa.a) <- "double"
storage.mode(kappa.b) <- "double"
storage.mode(tau.sq.beta.a) <- "double"
storage.mode(tau.sq.beta.b) <- "double"
storage.mode(phi.a) <- "double"
storage.mode(phi.b) <- "double"
storage.mode(nu.a) <- "double"
storage.mode(nu.b) <- "double"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(tuning.c) <- "double"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(nn.indx) <- "integer"
storage.mode(nn.indx.lu) <- "integer"
storage.mode(u.indx) <- "integer"
storage.mode(u.indx.lu) <- "integer"
storage.mode(ui.indx) <- "integer"
storage.mode(n.neighbors) <- "integer"
storage.mode(cov.model.indx) <- "integer"
chain.info <- c(curr.chain, n.chains)
storage.mode(chain.info) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
# samples.info order: burn-in, thinning rate, number of posterior samples
samples.info <- c(n.burn, n.thin, n.post.samples)
storage.mode(samples.info) <- "integer"
# For abundance random effects
storage.mode(X.re) <- "integer"
storage.mode(X.random) <- "double"
beta.level.indx <- sort(unique(c(X.re)))
storage.mode(beta.level.indx) <- "integer"
storage.mode(sigma.sq.mu.inits) <- "double"
storage.mode(sigma.sq.mu.a) <- "double"
storage.mode(sigma.sq.mu.b) <- "double"
storage.mode(beta.star.inits) <- "double"
storage.mode(beta.star.indx) <- "integer"
# NB = 1, Poisson = 0
family.c <- ifelse(family == 'NB', 1, 0)
storage.mode(family.c) <- "integer"
# Fit the model -------------------------------------------------------
out.tmp <- list()
out <- list()
for (i in 1:n.chains) {
# Change initial values if i > 1
if ((i > 1) & (!fix.inits)) {
if (!ind.betas) {
beta.comm.inits <- rnorm(p.abund, 0, 1)
tau.sq.beta.inits <- runif(p.abund, 0.05, 1)
}
beta.inits <- matrix(rnorm(n.sp * p.abund, beta.comm.inits,
sqrt(tau.sq.beta.inits)), n.sp, p.abund)
if (family == 'NB') {
kappa.inits <- runif(n.sp, kappa.a, kappa.b)
}
lambda.inits <- matrix(0, n.sp, q)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
lambda.inits <- c(lambda.inits)
phi.inits <- runif(q, phi.a, phi.b)
if (cov.model == 'matern') {
nu.inits <- runif(q, nu.a, nu.b)
}
if (p.abund.re > 0) {
sigma.sq.mu.inits <- runif(p.abund.re, 0.05, 1)
beta.star.inits <- rnorm(n.abund.re, 0, sqrt(sigma.sq.mu.inits[beta.star.indx + 1]))
beta.star.inits <- rep(beta.star.inits, n.sp)
}
}
storage.mode(chain.info) <- "integer"
out.tmp[[i]] <- .Call("sfMsAbundNNGP", y, X, coords, X.re, X.random,
consts, n.abund.re.long,
n.neighbors, nn.indx, nn.indx.lu, u.indx, u.indx.lu, ui.indx,
beta.inits, kappa.inits, beta.comm.inits,
tau.sq.beta.inits,
phi.inits, lambda.inits, nu.inits, w.inits,
sigma.sq.mu.inits, beta.star.inits,site.indx,
beta.star.indx, beta.level.indx,
mu.beta.comm, Sigma.beta.comm, kappa.a,
kappa.b, tau.sq.beta.a, tau.sq.beta.b,
phi.a, phi.b, nu.a, nu.b,
sigma.sq.mu.a, sigma.sq.mu.b, tuning.c, cov.model.indx,
n.batch, batch.length, accept.rate, n.omp.threads,
verbose, n.report, samples.info, chain.info, family.c, offset)
chain.info[1] <- chain.info[1] + 1
}
# Calculate R-Hat ---------------
out <- list()
out$rhat <- list()
if (n.chains > 1) {
# as.vector removes the "Upper CI" when there is only 1 variable.
if (!ind.betas) {
out$rhat$beta.comm <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.comm.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$tau.sq.beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$tau.sq.beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
} else {
out$rhat$beta.comm <- rep(NA, p.abund)
out$rhat$tau.sq.beta <- rep(NA, p.abund)
}
out$rhat$beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
if (family == 'NB') {
out$rhat$kappa <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$kappa.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
out$rhat$theta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$theta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2]
lambda.mat <- matrix(lambda.inits, n.sp, q)
out$rhat$lambda.lower.tri <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$lambda.samples[c(lower.tri(lambda.mat)), ])))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
if (p.abund.re > 0) {
out$rhat$sigma.sq.mu <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.mu.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
} else {
out$rhat$beta.comm <- rep(NA, p.abund)
out$rhat$tau.sq.beta <- rep(NA, p.abund)
out$rhat$beta <- rep(NA, p.abund * n.sp)
out$rhat$theta <- rep(NA, ifelse(cov.model == 'matern', 2 * q, q))
out$rhat$kappa <- rep(NA, n.sp)
if (p.abund.re > 0) {
out$rhat$sigma.sq.mu <- rep(NA, p.abund.re)
}
}
# Put everything into MCMC objects
out$beta.comm.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.comm.samples))))
colnames(out$beta.comm.samples) <- x.names
out$tau.sq.beta.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$tau.sq.beta.samples))))
colnames(out$tau.sq.beta.samples) <- x.names
if (is.null(sp.names)) {
sp.names <- paste('sp', 1:n.sp, sep = '')
}
coef.names <- paste(rep(x.names, each = n.sp), sp.names, sep = '-')
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- coef.names
if (family == 'NB') {
out$kappa.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$kappa.samples))))
colnames(out$kappa.samples) <- paste('kappa', sp.names, sep = '-')
}
loadings.names <- paste(rep(sp.names, times = n.factors), rep(1:n.factors, each = n.sp), sep = '-')
out$lambda.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$lambda.samples))))
colnames(out$lambda.samples) <- loadings.names
out$theta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$theta.samples))))
if (cov.model != 'matern') {
theta.names <- paste(rep(c('phi'), each = q), 1:q, sep = '-')
} else {
theta.names <- paste(rep(c('phi', 'nu'), each = q), 1:q, sep = '-')
}
colnames(out$theta.samples) <- theta.names
y.non.miss.indx <- which(!is.na(y.mat), arr.ind = TRUE)
if (save.fitted) {
out$y.rep.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$y.rep.samples,
dim = c(n.sp * n.obs, n.post.samples))))
tmp <- array(NA, dim = c(n.post.samples * n.chains, n.sp, J, K.max))
for (j in 1:(n.obs * n.sp)) {
curr.indx <- y.non.miss.indx[j, ]
tmp[, curr.indx[1], curr.indx[2], curr.indx[3]] <- out$y.rep.samples[j, ]
}
out$y.rep.samples <- tmp[, , order(ord), , drop = FALSE]
out$mu.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$mu.samples,
dim = c(n.sp * n.obs, n.post.samples))))
tmp <- array(NA, dim = c(n.post.samples * n.chains, n.sp, J, K.max))
for (j in 1:(n.obs * n.sp)) {
curr.indx <- y.non.miss.indx[j, ]
tmp[, curr.indx[1], curr.indx[2], curr.indx[3]] <- out$mu.samples[j, ]
}
out$mu.samples <- tmp[, , order(ord), , drop = FALSE]
out$like.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$like.samples,
dim = c(n.sp * n.obs, n.post.samples))))
tmp <- array(NA, dim = c(n.post.samples * n.chains, n.sp, J, K.max))
for (j in 1:(n.obs * n.sp)) {
curr.indx <- y.non.miss.indx[j, ]
tmp[, curr.indx[1], curr.indx[2], curr.indx[3]] <- out$like.samples[j, ]
}
out$like.samples <- tmp[, , order(ord), , drop = FALSE]
}
out$w.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$w.samples,
dim = c(q, J, n.post.samples))))
out$w.samples <- out$w.samples[, order(ord), , drop = FALSE]
out$w.samples <- aperm(out$w.samples, c(3, 1, 2))
if (p.abund.re > 0) {
out$sigma.sq.mu.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.mu.samples))))
colnames(out$sigma.sq.mu.samples) <- x.re.names
out$beta.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
tmp.names <- unlist(re.level.names)
beta.star.names <- paste(rep(x.re.names, n.abund.re.long), tmp.names, sep = '-')
beta.star.names <- paste(beta.star.names, rep(sp.names, each = n.abund.re), sep = '-')
colnames(out$beta.star.samples) <- beta.star.names
out$re.level.names <- re.level.names
}
# Calculate effective sample sizes
out$ESS <- list()
out$ESS$beta.comm <- effectiveSize(out$beta.comm.samples)
out$ESS$tau.sq.beta <- effectiveSize(out$tau.sq.beta.samples)
out$ESS$beta <- effectiveSize(out$beta.samples)
if (family == 'NB') {
out$ESS$kappa <- effectiveSize(out$kappa.samples)
}
out$ESS$theta <- effectiveSize(out$theta.samples)
out$ESS$lambda <- effectiveSize(out$lambda.samples)
if (p.abund.re > 0) {
out$ESS$sigma.sq.mu <- effectiveSize(out$sigma.sq.mu.samples)
}
tmp <- matrix(NA, J * K.max, p.abund)
tmp[names.long, ] <- X
tmp <- array(tmp, dim = c(J, K.max, p.abund))
tmp <- tmp[order(ord), , , drop = FALSE]
out$X <- tmp
dimnames(out$X)[[3]] <- x.names
tmp <- matrix(NA, J * K.max, p.abund.re)
tmp[names.long, ] <- X.re
tmp <- array(tmp, dim = c(J, K.max, p.abund.re))
tmp <- tmp[order(ord), , , drop = FALSE]
out$X.re <- tmp
dimnames(out$X.re)[[3]] <- colnames(X.re)
tmp <- matrix(NA, J * K.max, p.abund.re)
tmp[names.long, ] <- X.random
tmp <- array(tmp, dim = c(J, K.max, p.abund.re))
tmp <- tmp[order(ord), , , drop = FALSE]
out$X.random <- tmp
dimnames(out$X.random)[[3]] <- x.random.names
out$y <- y.mat[, order(ord), , drop = FALSE]
out$offset <- offset.mat[order(ord), , drop = FALSE]
out$call <- cl
out$n.samples <- n.samples
out$x.names <- x.names
out$sp.names <- sp.names
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
out$theta.names <- theta.names
out$type <- "NNGP"
out$coords <- coords[order(ord), ]
out$cov.model.indx <- cov.model.indx
out$n.neighbors <- n.neighbors
out$dist <- family
out$re.cols <- re.cols
out$q <- q
if (p.abund.re > 0) {
out$muRE <- TRUE
} else {
out$muRE <- FALSE
}
} # NNGP
class(out) <- "sfMsAbund"
out$run.time <- proc.time() - ptm
out
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.