Nothing
simTNMix <- function(J.x, J.y, n.time, n.rep, n.rep.max, beta, alpha, sp.only = 0,
trend = TRUE, kappa, mu.RE = list(), p.RE = list(),
offset = 1, sp = FALSE, cov.model, sigma.sq, phi,
nu, family = 'Poisson', ar1 = FALSE, rho, sigma.sq.t, ...) {
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Check function inputs -------------------------------------------------
# J.x -------------------------------
if (missing(J.x)) {
stop("error: J.x must be specified")
}
if (length(J.x) != 1) {
stop("error: J.x must be a single numeric value.")
}
# J.y -------------------------------
if (missing(J.y)) {
stop("error: J.y must be specified")
}
if (length(J.y) != 1) {
stop("error: J.y must be a single numeric value.")
}
J <- J.x * J.y
# n.time ---------------------------
if (missing(n.time)) {
stop("error: n.time must be specified.")
}
# n.rep -----------------------------
if (missing(n.rep)) {
stop("error: n.rep must be specified.")
}
if (!is.matrix(n.rep)) {
stop(paste("error: n.rep must be a matrix with ", J, " rows and ", max(n.time), " columns", sep = ''))
}
if (missing(n.rep.max)) {
n.rep.max <- max(n.rep, na.rm = TRUE)
}
if (nrow(n.rep) != J | ncol(n.rep) != max(n.time)) {
stop(paste("error: n.rep must be a matrix with ", J, " rows and ", max(n.time), " columns", sep = ''))
}
# beta ------------------------------
if (missing(beta)) {
stop("error: beta must be specified.")
if (length(beta) <= 1) {
stop("error: beta must have at least two elements (intercept and trend)")
}
}
# alpha -----------------------------
if (missing(alpha)) {
stop("error: alpha must be specified.")
}
# family ------------------------------
if (! (family %in% c('NB', 'Poisson'))) {
stop("error: family must be either NB (negative binomial) or Poisson")
}
# kappa -----------------------------
if (family == 'NB') {
if (missing(kappa)) {
stop("error: kappa (overdispersion parameter) must be specified when family = 'NB'.")
}
}
if (family == 'Poisson' & !missing(kappa)) {
message("overdispersion parameter (kappa) is ignored when family == 'Poisson'")
}
# mu.RE ----------------------------
names(mu.RE) <- tolower(names(mu.RE))
if (!is.list(mu.RE)) {
stop("error: if specified, mu.RE must be a list with tags 'levels' and 'sigma.sq.mu'")
}
if (length(names(mu.RE)) > 0) {
if (!'sigma.sq.mu' %in% names(mu.RE)) {
stop("error: sigma.sq.mu must be a tag in mu.RE with values for the abundance random effect variances")
}
if (!'levels' %in% names(mu.RE)) {
stop("error: levels must be a tag in mu.RE with the number of random effect levels for each abundance random intercept.")
}
if (!'beta.indx' %in% names(mu.RE)) {
mu.RE$beta.indx <- list()
for (i in 1:length(mu.RE$sigma.sq.mu)) {
mu.RE$beta.indx[[i]] <- 1
}
}
}
# p.RE ----------------------------
names(p.RE) <- tolower(names(p.RE))
if (!is.list(p.RE)) {
stop("error: if specified, p.RE must be a list with tags 'levels' and 'sigma.sq.p'")
}
if (length(names(p.RE)) > 0) {
if (!'sigma.sq.p' %in% names(p.RE)) {
stop("error: sigma.sq.p must be a tag in p.RE with values for the detection random effect variances")
}
if (!'levels' %in% names(p.RE)) {
stop("error: levels must be a tag in p.RE with the number of random effect levels for each detection random intercept.")
}
if (!'alpha.indx' %in% names(p.RE)) {
p.RE$alpha.indx <- list()
for (i in 1:length(p.RE$sigma.sq.p)) {
p.RE$alpha.indx[[i]] <- 1
}
}
}
# Spatial parameters ----------------
if (sp) {
if(missing(sigma.sq)) {
stop("error: sigma.sq must be specified when sp = TRUE")
}
if(missing(phi)) {
stop("error: phi must be specified when sp = TRUE")
}
if(missing(cov.model)) {
stop("error: cov.model must be specified when sp = TRUE")
}
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")
}
if (cov.model == 'matern' & missing(nu)) {
stop("error: nu must be specified when cov.model = 'matern'")
}
}
# AR1 -------------------------------
if (ar1) {
if (missing(rho)) {
stop("error: rho must be specified when ar1 = TRUE")
}
if (missing(sigma.sq.t)) {
stop("error: sigma.sq.t must be specified when ar1 = TRUE")
}
}
# Subroutines -----------------------------------------------------------
# MVN
rmvn <- function(n, mu=0, V = matrix(1)) {
p <- length(mu)
if(any(is.na(match(dim(V),p))))
stop("Dimension problem!")
D <- chol(V)
t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
logit <- function(theta, a = 0, b = 1){log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1){b-(b-a)/(1+exp(z))}
# Form abundance covariates if any --------------------------------------
n.beta <- length(beta)
n.time.max <- max(n.time, na.rm = TRUE)
time.indx <- list()
for (j in 1:J) {
time.indx[[j]] <- sample(which(!is.na(n.rep[j, ])), n.time[j], replace = FALSE)
}
X <- array(NA, dim = c(J, n.time.max, n.beta))
X[, , 1] <- 1
if (n.beta > 1) {
if (trend) { # If simulating data with a trend
# By default the second simulated covariate is a standardized trend
X[, , 2] <- scale(c(matrix(rep(1:n.time.max, each = J), nrow = J, ncol = n.time.max)))
if (n.beta > 2) {
for (i in 3:n.beta) {
if (i %in% sp.only) {
X[, , i] <- rep(rnorm(J), n.time.max)
} else {
X[, , i] <- rnorm(J * n.time.max)
}
}
}
} else { # If not simulating data with a trend
if (n.beta > 1) {
for (i in 2:n.beta) {
if (i %in% sp.only) {
X[, , i] <- rep(rnorm(J), n.time.max)
} else {
X[, , i] <- rnorm(J * n.time.max)
}
}
}
}
}
# Form detection covariates (if any) ------------------------------------
# Time dependent --------------------
rep.indx <- list()
for (j in 1:J) {
rep.indx[[j]] <- list()
for (t in time.indx[[j]]) {
rep.indx[[j]][[t]] <- sample(1:n.rep.max, n.rep[j, t], replace = FALSE)
}
}
n.alpha <- length(alpha)
X.p <- array(NA, dim = c(J, n.time.max, n.rep.max, n.alpha))
X.p[, , , 1] <- 1
if (n.alpha > 1) {
for (j in 1:J) {
for (t in time.indx[[j]]) {
for (k in rep.indx[[j]][[t]]) {
X.p[j, t, k, 2:n.alpha] <- rnorm(n.alpha - 1)
} # k
} # t
} # j
}
# Simulate spatial random effect ----------------------------------------
# Matrix of spatial locations
s.x <- seq(0, 1, length.out = J.x)
s.y <- seq(0, 1, length.out = J.y)
coords <- as.matrix(expand.grid(s.x, s.y))
if (sp) {
if (cov.model == 'matern') {
theta <- c(phi, nu)
} else {
theta <- phi
}
Sigma <- mkSpCov(coords, as.matrix(sigma.sq), as.matrix(0), theta, cov.model)
# Random spatial process
w <- rmvn(1, rep(0, J), Sigma)
} else {
w <- NA
}
# Random effects --------------------------------------------------------
# Abundance -------------------------
if (length(mu.RE) > 0) {
p.nmix.re <- length(unlist(mu.RE$beta.indx))
tmp <- sapply(mu.RE$beta.indx, length)
re.col.indx <- unlist(lapply(1:length(mu.RE$beta.indx), function(a) rep(a, tmp[a])))
sigma.sq.mu <- mu.RE$sigma.sq.mu[re.col.indx]
n.nmix.re.long <- mu.RE$levels[re.col.indx]
n.nmix.re <- sum(n.nmix.re.long)
beta.star.indx <- rep(1:p.nmix.re, n.nmix.re.long)
beta.star <- rep(0, n.nmix.re)
X.random <- X[, , unlist(mu.RE$beta.indx), drop = FALSE]
n.random <- dim(X.random)[3]
X.re <- array(NA, dim = c(J, n.time.max, length(mu.RE$levels)))
for (i in 1:length(mu.RE$levels)) {
X.re[, , i] <- sample(1:mu.RE$levels[i], J * n.time.max, replace = TRUE)
}
indx.mat <- X.re[, , re.col.indx, drop = FALSE]
for (i in 1:p.nmix.re) {
beta.star[which(beta.star.indx == i)] <- rnorm(n.nmix.re.long[i], 0,
sqrt(sigma.sq.mu[i]))
}
if (length(mu.RE$levels) > 1) {
for (j in 2:length(mu.RE$levels)) {
X.re[, , j] <- X.re[, , j] + max(X.re[, , j - 1], na.rm = TRUE)
}
}
if (p.nmix.re > 1) {
for (j in 2:p.nmix.re) {
indx.mat[, , j] <- indx.mat[, , j] + max(indx.mat[, , j - 1], na.rm = TRUE)
}
}
beta.star.sites <- matrix(NA, J, n.time.max)
for (j in 1:J) {
for (t in 1:n.time.max) {
beta.star.sites[j, t] <- beta.star[indx.mat[j, t, ]] %*% as.matrix(X.random[j, t, ])
} # k
} # j
} else {
X.re <- NA
beta.star <- NA
}
# Detection -------------------------
if (length(p.RE) > 0) {
p.det.re <- length(unlist(p.RE$alpha.indx))
tmp <- sapply(p.RE$alpha.indx, length)
p.re.col.indx <- unlist(lapply(1:length(p.RE$alpha.indx), function(a) rep(a, tmp[a])))
sigma.sq.p <- p.RE$sigma.sq.p[p.re.col.indx]
n.det.re.long <- p.RE$levels[p.re.col.indx]
n.det.re <- sum(n.det.re.long)
alpha.star.indx <- rep(1:p.det.re, n.det.re.long)
alpha.star <- rep(0, n.det.re)
X.p.random <- X.p[, , , unlist(p.RE$alpha.indx), drop = FALSE]
X.p.re <- array(NA, dim = c(J, n.time.max, n.rep.max, length(p.RE$levels)))
for (i in 1:length(p.RE$levels)) {
X.p.re[, , , i] <- array(sample(1:p.RE$levels[i], J * n.rep.max * n.time.max, replace = TRUE),
dim = c(J, n.time.max, n.rep.max))
}
for (i in 1:p.det.re) {
alpha.star[which(alpha.star.indx == i)] <- rnorm(n.det.re.long[i], 0, sqrt(sigma.sq.p[i]))
}
for (j in 1:J) {
for (t in time.indx[[j]]) {
X.p.re[j, t, -rep.indx[[j]][[t]], ] <- NA
}
}
indx.mat <- X.p.re[, , , p.re.col.indx, drop = FALSE]
if (length(p.RE$levels) > 1) {
for (j in 2:length(p.RE$levels)) {
X.p.re[, , , j] <- X.p.re[, , , j] + max(X.p.re[, , , j - 1], na.rm = TRUE)
}
}
if (p.det.re > 1) {
for (j in 2:p.det.re) {
indx.mat[, , , j] <- indx.mat[, , , j] + max(indx.mat[, , , j - 1], na.rm = TRUE)
}
}
alpha.star.sites <- array(NA, dim = c(J, n.time.max, n.rep.max))
for (j in 1:J) {
for (t in time.indx[[j]]) {
for (k in rep.indx[[j]][[t]]) {
alpha.star.sites[j, t, k] <- alpha.star[indx.mat[j, t, k, ]] %*% X.p.random[j, t, k, ]
}
}
}
} else {
X.p.re <- NA
alpha.star <- NA
}
# Simulate temporal (AR1) random effect ---------------------------------
if (ar1) {
exponent <- abs(matrix(1:n.time.max - 1, nrow = n.time.max,
ncol = n.time.max, byrow = TRUE) - (1:n.time.max - 1))
Sigma.eta <- sigma.sq.t * rho^exponent
eta <- rmvn(1, rep(0, n.time.max), Sigma.eta)
} else {
eta <- matrix(rep(0, n.time.max))
}
# Latent abundance process ----------------------------------------------
mu <- matrix(NA, J, n.time.max)
N <- matrix(NA, J, n.time.max)
for (j in 1:J) {
for (t in 1:n.time.max) {
if (sp) {
if (length(mu.RE) > 0) {
mu[j, t] <- exp(X[j, t, ] %*% as.matrix(beta) + w[j] +
beta.star.sites[j, t] + eta[t])
} else {
mu[j, t] <- exp(X[j, t, ] %*% as.matrix(beta) + w[j] + eta[t])
}
} else {
if (length(mu.RE) > 0) {
mu[j, t] <- exp(X[j, t, ] %*% as.matrix(beta) +
beta.star.sites[j, t] + eta[t])
} else {
mu[j, t] <- exp(X[j, t, ] %*% as.matrix(beta) + eta[t])
}
}
if (family == 'NB') {
# Get mean and overdispersion parameter
N[j, t] <- rnbinom(1, size = kappa, mu = mu[j, t] * offset)
} else if (family == 'Poisson') {
N[j, t] <- rpois(1, lambda = mu[j, t] * offset)
}
} # t
} # j
# Data Formation --------------------------------------------------------
p <- array(NA, dim = c(J, n.time.max, n.rep.max))
y <- array(NA, dim = c(J, n.time.max, n.rep.max))
for (j in 1:J) {
for (t in time.indx[[j]]) {
if (length(p.RE) > 0) {
p[j, t, rep.indx[[j]][[t]]] <- logit.inv(X.p[j, t, rep.indx[[j]][[t]], ]
%*% as.matrix(alpha) +
alpha.star.sites[j, t, rep.indx[[j]][[t]]])
} else {
p[j, t, rep.indx[[j]][[t]]] <- logit.inv(X.p[j, t, rep.indx[[j]][[t]], ]
%*% as.matrix(alpha))
}
y[j, t, rep.indx[[j]][[t]]] <- rbinom(n.rep[j, t], N[j, t], p[j, t, rep.indx[[j]][[t]]])
} # t
} # j
# Return list -----------------------------------------------------------
return(
list(X = X, X.p = X.p, coords = coords, w = w, mu = mu, N = N,
y = y, X.re = X.re, X.p.re = X.p.re, beta.star = beta.star, p = p,
alpha.star = alpha.star, eta = eta)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.