Nothing
spAbundGaussian <- function(formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, family = 'Gaussian',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, save.fitted = TRUE, ...){
ptm <- proc.time()
# Make it look nice
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing to run the model\n");
cat("----------------------------------------\n");
}
# Functions ---------------------------------------------------------------
logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
rigamma <- function(n, a, b){
1/rgamma(n = n, shape = a, rate = b)
}
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Call ----------------------------------------------------------------
# Returns a call in which all of the specified arguments are
# specified by their full names.
cl <- match.call()
# Some initial checks -------------------------------------------------
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
if (missing(formula)) {
stop("error: formula must be specified")
}
if (!'y' %in% names(data)) {
stop("error: detection-nondetection data y must be specified in data")
}
y <- c(data$y)
if (!'covs' %in% names(data)) {
if (formula == ~ 1) {
if (verbose) {
message("covariates (covs) not specified in data.\nAssuming intercept only model.\n")
}
data$covs <- matrix(1, length(y), 1)
} else {
stop("error: covs must be specified in data for a model with covariates")
}
}
if (!is.list(data$covs)) {
if (is.matrix(data$covs)) {
data$covs <- data.frame(data$covs)
} else {
stop("error: covs must be a list, data frame, or matrix")
}
}
if (!'coords' %in% names(data)) {
stop("error: coords must be specified in data for a spatial model.")
}
if (!is.matrix(data$coords) & !is.data.frame(data$coords)) {
stop("error: coords must be a matrix or data frame")
}
coords <- as.matrix(data$coords)
# Give warning if an offset is specified
if ('offset' %in% names(data)) {
message("offsets are not supported with Gaussian or zi-Gaussian GLMMs.\nIgnoring data$offset when fitting the model.\n")
}
if (family == 'zi-Gaussian') {
two.stage <- TRUE
} else {
two.stage <- FALSE
}
if (two.stage) {
if (!'z' %in% names(data)) {
stop("error: z must be specified in data for a zi-Gaussian model")
}
z <- data$z
} else {
z <- rep(1, length(y))
}
# First subset covariates to only use those that are included in the analysis.
# Get occurrence covariates in proper format
# Subset covariates to only use those that are included in the analysis
data$covs <- data$covs[names(data$covs) %in% all.vars(formula)]
# Null model support
if (length(data$covs) == 0) {
data$covs <- list(int = rep(1, length(y)))
}
# Ordered by rep, then site within rep
data$covs <- data.frame(lapply(data$covs, function(a) unlist(c(a))))
# Check first-stage sample ----------------------------------------------
if (length(z) != length(y)) {
stop(paste("z must be a vector of length ", length(y), ".", sep = ''))
}
# Number of points where z == 1
J.est <- sum(z == 1)
# Number of points where z != 1
J.zero <- sum(z == 0)
# Index for the sites where z == 1
z.indx <- which(z == 1)
# Filter all objects to only use sites with z == 1
y.orig <- y
y <- y[z.indx]
coords <- coords[z.indx, ]
data$covs <- data$covs[z.indx, , drop = FALSE]
# Neighbors and Ordering ----------------------------------------------
if (NNGP) {
u.search.type <- 2
## Order by x column. Could potentially allow this to be user defined.
ord <- order(coords[,1])
# Reorder everything to align with NN ordering
y <- y[ord, drop = FALSE]
coords <- coords[ord, , drop = FALSE]
# Covariates
data$covs <- data$covs[ord, , drop = FALSE]
}
# Checking missing values ---------------------------------------------
# y -------------------------------
if (sum(is.na(y) > 0)) {
stop("error: some sites in y have missing values. Remove these sites from all objects in the 'data' argument, then use 'predict' to obtain predictions at these locations if desired.")
}
# covs ------------------------
if (sum(is.na(data$covs)) != 0) {
stop("error: missing values in covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
# Check whether random effects are sent in as numeric, and
# return error if they are.
# Occurrence ----------------------
if (!is.null(findbars(formula))) {
re.names <- unique(unlist(sapply(findbars(formula), all.vars)))
for (i in 1:length(re.names)) {
if (is(data$covs[, re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$covs[, re.names[i]], 'character')) {
stop(paste("error: random effect variable ", re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Check save.fitted ---------------------------------------------------
if (!(save.fitted %in% c(TRUE, FALSE))) {
stop("save.fitted must be either TRUE or FALSE")
}
# Formula -------------------------------------------------------------
# Occupancy -----------------------
if (is(formula, 'formula')) {
tmp <- parseFormula(formula, data$covs)
X <- as.matrix(tmp[[1]])
X.re <- as.matrix(tmp[[4]])
x.re.names <- colnames(X.re)
x.names <- tmp[[2]]
X.random <- as.matrix(tmp[[5]])
x.random.names <- colnames(X.random)
} else {
stop("error: formula is misspecified")
}
# Get RE level names
re.level.names <- lapply(data$covs[, x.re.names, drop = FALSE],
function (a) sort(unique(a)))
x.re.names <- x.random.names
# Get basic info from inputs ------------------------------------------
# Number of sites
J <- nrow(coords)
# Number of parameters
p <- ncol(X)
# Number of random effect parameters
p.re <- ncol(X.re)
# Number of latent random effect values
n.re <- length(unlist(apply(X.re, 2, unique)))
n.re.long <- apply(X.re, 2, function(a) length(unique(a)))
if (missing(n.batch)) {
stop("error: must specify number of MCMC batches")
}
if (missing(batch.length)) {
stop("error: must specify length of each MCMC batch")
}
n.samples <- n.batch * batch.length
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
# Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
}
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
# Get random effect matrices all set ----------------------------------
X.re <- X.re - 1
if (p.re > 1) {
for (j in 2:p.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
}
}
# Priors --------------------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# beta -----------------------
if ("beta.normal" %in% names(priors)) {
if (!is.list(priors$beta.normal) | length(priors$beta.normal) != 2) {
stop("error: beta.normal must be a list of length 2")
}
mu.beta <- priors$beta.normal[[1]]
sigma.beta <- priors$beta.normal[[2]]
if (length(mu.beta) != p & length(mu.beta) != 1) {
if (p == 1) {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p, " with elements corresponding to betas' mean", sep = ""))
} else {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p, " or 1 with elements corresponding to betas' mean", sep = ""))
}
}
if (length(sigma.beta) != p & length(sigma.beta) != 1) {
if (p == 1) {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p, " with elements corresponding to betas' variance", sep = ""))
} else {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p, " or 1 with elements corresponding to betas' variance", sep = ""))
}
}
if (length(sigma.beta) != p) {
sigma.beta <- rep(sigma.beta, p)
}
if (length(mu.beta) != p) {
mu.beta <- rep(mu.beta, p)
}
Sigma.beta <- sigma.beta * diag(p)
} else {
if (verbose) {
message("No prior specified for beta.normal.\nSetting prior mean to 0 and prior variance to 100\n")
}
mu.beta <- rep(0, p)
sigma.beta <- rep(100, p)
Sigma.beta <- diag(p) * 100
}
# phi -----------------------------
if ("phi.unif" %in% names(priors)) {
if (!is.vector(priors$phi.unif) | !is.atomic(priors$phi.unif) | length(priors$phi.unif) != 2) {
stop("error: phi.unif must be a vector of length 2 with elements corresponding to phi's lower and upper bounds")
}
phi.a <- priors$phi.unif[1]
phi.b <- priors$phi.unif[2]
} else {
if (verbose) {
message("No prior specified for phi.unif.\nSetting uniform bounds based on the range of observed spatial coordinates.\n")
}
# Get distance matrix which is used if priors are not specified
coords.D <- iDist(coords)
phi.a <- 3 / max(coords.D)
phi.b <- 3 / sort(unique(c(coords.D)))[2]
}
# sigma.sq -----------------------------
if (("sigma.sq.ig" %in% names(priors)) & ("sigma.sq.unif" %in% names(priors))) {
stop("error: cannot specify both an IG and a uniform prior for sigma.sq")
}
if ("sigma.sq.ig" %in% names(priors)) { # inverse-gamma prior.
sigma.sq.ig <- TRUE
if (!is.vector(priors$sigma.sq.ig) | !is.atomic(priors$sigma.sq.ig) | length(priors$sigma.sq.ig) != 2) {
stop("error: sigma.sq.ig must be a vector of length 2 with elements corresponding to sigma.sq's shape and scale parameters")
}
sigma.sq.a <- priors$sigma.sq.ig[1]
sigma.sq.b <- priors$sigma.sq.ig[2]
} else if ('sigma.sq.unif' %in% names(priors)) {
sigma.sq.ig <- FALSE
if (!is.vector(priors$sigma.sq.unif) | !is.atomic(priors$sigma.sq.unif) | length(priors$sigma.sq.unif) != 2) {
stop("error: sigma.sq.unif must be a vector of length 2 with elements corresponding to sigma.sq's lower and upper bounds")
}
sigma.sq.a <- priors$sigma.sq.unif[1]
sigma.sq.b <- priors$sigma.sq.unif[2]
} else {
if (verbose) {
message("No prior specified for sigma.sq.\nUsing an inverse-Gamma prior with the shape parameter set to 2 and scale parameter to 1.\n")
}
sigma.sq.ig <- TRUE
sigma.sq.a <- 2
sigma.sq.b <- 1
}
# nu -----------------------------
if (cov.model == 'matern') {
if (!"nu.unif" %in% names(priors)) {
stop("error: nu.unif must be specified in priors value list")
}
if (!is.vector(priors$nu.unif) | !is.atomic(priors$nu.unif) | length(priors$nu.unif) != 2) {
stop("error: nu.unif must be a vector of length 2 with elements corresponding to nu's lower and upper bounds")
}
nu.a <- priors$nu.unif[1]
nu.b <- priors$nu.unif[2]
} else {
nu.a <- 0
nu.b <- 0
}
# tau.sq.t ----------------------
if ("tau.sq.ig" %in% names(priors)) {
if (!is.vector(priors$tau.sq.ig) | !is.atomic(priors$tau.sq.ig) | length(priors$tau.sq.ig) != 2) {
stop("error: tau.sq.ig must be a vector of length 2 with elements corresponding to tau.sq's shape and scale parameters")
}
tau.sq.a <- priors$tau.sq.ig[1]
tau.sq.b <- priors$tau.sq.ig[2]
} else {
if (verbose) {
message("No prior specified for tau.sq.\nUsing an inverse-Gamma prior with the shape parameter set to 0.01 and scale parameter to 0.01.\n")
}
tau.sq.a <- 0.01
tau.sq.b <- 0.01
}
# sigma.sq.mu --------------------
if (p.re > 0) {
if ("sigma.sq.mu.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.mu.ig) | length(priors$sigma.sq.mu.ig) != 2) {
stop("error: sigma.sq.mu.ig must be a list of length 2")
}
sigma.sq.mu.a <- priors$sigma.sq.mu.ig[[1]]
sigma.sq.mu.b <- priors$sigma.sq.mu.ig[[2]]
if (length(sigma.sq.mu.a) != p.re & length(sigma.sq.mu.a) != 1) {
if (p.re == 1) {
stop(paste("error: sigma.sq.mu.ig[[1]] must be a vector of length ",
p.re, " with elements corresponding to sigma.sq.mus' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.mu.ig[[1]] must be a vector of length ",
p.re, " or 1 with elements corresponding to sigma.sq.mus' shape", sep = ""))
}
}
if (length(sigma.sq.mu.b) != p.re & length(sigma.sq.mu.b) != 1) {
if (p.re == 1) {
stop(paste("error: sigma.sq.mu.ig[[2]] must be a vector of length ",
p.re, " with elements corresponding to sigma.sq.mus' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.mu.ig[[2]] must be a vector of length ",
p.re, " or 1with elements corresponding to sigma.sq.mus' scale", sep = ""))
}
}
if (length(sigma.sq.mu.a) != p.re) {
sigma.sq.mu.a <- rep(sigma.sq.mu.a, p.re)
}
if (length(sigma.sq.mu.b) != p.re) {
sigma.sq.mu.b <- rep(sigma.sq.mu.b, p.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.mu.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.mu.a <- rep(0.1, p.re)
sigma.sq.mu.b <- rep(0.1, p.re)
}
} else {
sigma.sq.mu.a <- 0
sigma.sq.mu.b <- 0
}
# Starting values -----------------------------------------------------
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
# beta -----------------------
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (length(beta.inits) != p & length(beta.inits) != 1) {
if (p == 1) {
stop(paste("error: initial values for beta must be of length ", p,
sep = ""))
} else {
stop(paste("error: initial values for beta must be of length ", p, " or 1",
sep = ""))
}
}
if (length(beta.inits) != p) {
beta.inits <- rep(beta.inits, p)
}
} else {
beta.inits <- rnorm(p, mu.beta, sqrt(sigma.beta))
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from the prior distribution\n')
}
}
# phi -----------------------------
if ("phi" %in% names(inits)) {
phi.inits <- inits[["phi"]]
if (length(phi.inits) != 1) {
stop("error: initial values for phi must be of length 1")
}
} else {
phi.inits <- runif(1, phi.a, phi.b)
if (verbose) {
message("phi is not specified in initial values.\nSetting initial value to random value from the prior distribution\n")
}
}
# sigma.sq ------------------------
if ("sigma.sq" %in% names(inits)) {
sigma.sq.inits <- inits[["sigma.sq"]]
if (length(sigma.sq.inits) != 1) {
stop("error: initial values for sigma.sq must be of length 1")
}
} else {
if (sigma.sq.ig) {
sigma.sq.inits <- runif(1, 0.05, 3)
} else {
sigma.sq.inits <- runif(1, sigma.sq.a, sigma.sq.b)
}
if (verbose) {
message("sigma.sq is not specified in initial values.\nSetting initial value to random value between 0.05 and 3 or the user-specified bounds if using a uniform prior.")
}
}
# w -----------------------------
if ("w" %in% names(inits)) {
w.inits <- inits[["w"]]
if (!is.vector(w.inits)) {
stop(paste("error: initial values for w must be a vector of length ",
J, sep = ""))
}
if (length(w.inits) != J) {
stop(paste("error: initial values for w must be a vector of length ",
J, sep = ""))
}
# Reorder user supplied initial values.
w.inits <- w.inits[ord]
} else {
w.inits <- rep(0, J)
if (verbose) {
message("w is not specified in initial values.\nSetting initial value to 0\n")
}
}
# nu ------------------------
if ("nu" %in% names(inits)) {
nu.inits <- inits[["nu"]]
if (length(nu.inits) != 1) {
stop("error: initial values for nu must be of length 1")
}
} else {
if (cov.model == 'matern') {
if (verbose) {
message("nu is not specified in initial values.\nSetting initial value to random value from the prior distribution\n")
}
nu.inits <- runif(1, nu.a, nu.b)
} else {
nu.inits <- 0
}
}
# tau.sq ------------------------
if ("tau.sq" %in% names(inits)) {
tau.sq.inits <- inits[["tau.sq"]]
if (length(tau.sq.inits) != 1) {
stop("error: initial values for tau.sq must be of length 1")
}
} else {
tau.sq.inits <- runif(1, 0.5, 10)
if (verbose) {
message("tau.sq is not specified in initial values.\nSetting initial value to random value between 0.5 and 10\n")
}
}
# sigma.sq.mu -------------------
if (p.re > 0) {
if ("sigma.sq.mu" %in% names(inits)) {
sigma.sq.mu.inits <- inits[["sigma.sq.mu"]]
if (length(sigma.sq.mu.inits) != p.re & length(sigma.sq.mu.inits) != 1) {
if (p.re == 1) {
stop(paste("error: initial values for sigma.sq.mu must be of length ", p.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.mu must be of length ", p.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.mu.inits) != p.re) {
sigma.sq.mu.inits <- rep(sigma.sq.mu.inits, p.re)
}
} else {
sigma.sq.mu.inits <- runif(p.re, 0.5, 10)
if (verbose) {
message("sigma.sq.mu is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
}
}
beta.star.indx <- rep(0:(p.re - 1), n.re.long)
beta.star.inits <- rnorm(n.re, 0, sqrt(sigma.sq.mu.inits[beta.star.indx + 1]))
} else {
sigma.sq.mu.inits <- 0
beta.star.indx <- 0
beta.star.inits <- 0
}
# Should initial values be fixed --
if ("fix" %in% names(inits)) {
fix.inits <- inits[["fix"]]
if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
stop(paste("error: inits$fix must take value TRUE or FALSE"))
}
} else {
fix.inits <- FALSE
}
if (verbose & fix.inits & (n.chains > 1)) {
message("Fixing initial values across all chains\n")
}
# Covariance Model ----------------------------------------------------
# Order must match util.cpp spCor.
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")}
# Obo for cov model lookup on c side
cov.model.indx <- which(cov.model == cov.model.names) - 1
storage.mode(cov.model.indx) <- "integer"
# Get tuning values ---------------------------------------------------
# Not accessed, but necessary to keep things in line.
sigma.sq.tuning <- 0
phi.tuning <- 0
nu.tuning <- 0
if (missing(tuning)) {
phi.tuning <- 1
if (cov.model == 'matern') {
nu.tuning <- 1
}
if (!sigma.sq.ig) {
sigma.sq.tuning <- 1
}
} else {
names(tuning) <- tolower(names(tuning))
# phi ---------------------------
if (!"phi" %in% names(tuning)) {
stop("error: phi must be specified in tuning value list")
}
phi.tuning <- tuning$phi
if (length(phi.tuning) != 1) {
stop("error: phi tuning must be a single value")
}
if (cov.model == 'matern') {
# nu --------------------------
if(!"nu" %in% names(tuning)) {
stop("error: nu must be specified in tuning value list")
}
nu.tuning <- tuning$nu
if (length(nu.tuning) != 1) {
stop("error: nu tuning must be a single value")
}
} else {
nu.tuning <- NULL
}
if (!sigma.sq.ig) {
# sigma.sq --------------------------
if(!"sigma.sq" %in% names(tuning)) {
stop("error: sigma.sq must be specified in tuning value list")
}
sigma.sq.tuning <- tuning$sigma.sq
if (length(sigma.sq.tuning) != 1) {
stop("error: sigma.sq tuning must be a single value")
}
}
}
tuning.c <- log(c(sigma.sq.tuning, phi.tuning, nu.tuning))
# Set model.deviance to NA for returning when no cross-validation
model.deviance <- NA
curr.chain <- 1
if (!NNGP) {
stop("error: spAbund is currently only implemented for NNGPs, not full Gaussian Processes. Please set NNGP = TRUE.")
} else {
# Nearest Neighbor Search ---------------------------------------------
if(verbose){
cat("----------------------------------------\n");
cat("\tBuilding the neighbor list\n");
cat("----------------------------------------\n");
}
search.type.names <- c("brute", "cb")
if(!search.type %in% search.type.names){
stop("error: specified search.type '",search.type,
"' is not a valid option; choose from ",
paste(search.type.names, collapse=", ", sep="") ,".")
}
storage.mode(n.neighbors) <- "integer"
storage.mode(n.omp.threads) <- "integer"
## Indexes
if(search.type == "brute"){
indx <- mkNNIndx(coords, n.neighbors, n.omp.threads)
} else{
indx <- mkNNIndxCB(coords, n.neighbors, n.omp.threads)
}
nn.indx <- indx$nnIndx
nn.indx.lu <- indx$nnIndxLU
nn.indx.run.time <- indx$run.time
storage.mode(nn.indx) <- "integer"
storage.mode(nn.indx.lu) <- "integer"
storage.mode(u.search.type) <- "integer"
storage.mode(J.est) <- "integer"
if(verbose){
cat("----------------------------------------\n");
cat("Building the neighbors of neighbors list\n");
cat("----------------------------------------\n");
}
indx <- mkUIndx(J.est, n.neighbors, nn.indx, nn.indx.lu, u.search.type)
u.indx <- indx$u.indx
u.indx.lu <- indx$u.indx.lu
ui.indx <- indx$ui.indx
u.indx.run.time <- indx$run.time
# Other miscellaneous ---------------------------------------------------
# For prediction with random slopes
re.cols <- list()
if (p.re > 0) {
split.names <- strsplit(x.re.names, "[-]")
for (j in 1:p.re) {
re.cols[[j]] <- split.names[[j]][1]
names(re.cols)[j] <- split.names[[j]][2]
}
}
# Set storage for all variables ---------------------------------------
storage.mode(y) <- "double"
storage.mode(X) <- "double"
consts <- c(J.est, p, p.re, n.re, J.zero, save.fitted)
storage.mode(consts) <- "integer"
storage.mode(coords) <- "double"
storage.mode(beta.inits) <- "double"
storage.mode(tau.sq.inits) <- "double"
storage.mode(phi.inits) <- "double"
storage.mode(sigma.sq.inits) <- "double"
storage.mode(nu.inits) <- "double"
storage.mode(w.inits) <- "double"
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(phi.a) <- "double"
storage.mode(phi.b) <- "double"
storage.mode(tau.sq.a) <- "double"
storage.mode(tau.sq.b) <- "double"
storage.mode(nu.a) <- "double"
storage.mode(nu.b) <- "double"
storage.mode(sigma.sq.a) <- "double"
storage.mode(sigma.sq.b) <- "double"
storage.mode(sigma.sq.ig) <- "integer"
storage.mode(tuning.c) <- "double"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(nn.indx) <- "integer"
storage.mode(nn.indx.lu) <- "integer"
storage.mode(u.indx) <- "integer"
storage.mode(u.indx.lu) <- "integer"
storage.mode(ui.indx) <- "integer"
storage.mode(n.neighbors) <- "integer"
storage.mode(cov.model.indx) <- "integer"
chain.info <- c(curr.chain, n.chains)
storage.mode(chain.info) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
storage.mode(n.post.samples) <- "integer"
samples.info <- c(n.burn, n.thin, n.post.samples)
storage.mode(samples.info) <- "integer"
# For random effects
storage.mode(X.re) <- "integer"
storage.mode(X.random) <- "double"
beta.level.indx <- sort(unique(c(X.re)))
storage.mode(beta.level.indx) <- "integer"
storage.mode(sigma.sq.mu.inits) <- "double"
storage.mode(sigma.sq.mu.a) <- "double"
storage.mode(sigma.sq.mu.b) <- "double"
storage.mode(beta.star.inits) <- "double"
storage.mode(beta.star.indx) <- "integer"
if (two.stage) {
storage.mode(z) <- 'double'
}
# Fit the model -------------------------------------------------------
out.tmp <- list()
# Random seed information for each chain of the model
seeds.list <- list()
out <- list()
for (i in 1:n.chains) {
# Change initial values if i > 1
if ((i > 1) & (!fix.inits)) {
beta.inits <- rnorm(p, mu.beta, sqrt(sigma.beta))
if (sigma.sq.ig) {
sigma.sq.inits <- runif(1, 0.05, 3)
} else {
sigma.sq.inits <- runif(1, sigma.sq.a, sigma.sq.b)
}
phi.inits <- runif(1, phi.a, phi.b)
if (cov.model == 'matern') {
nu.inits <- runif(1, nu.a, nu.b)
}
if (p.re > 0) {
sigma.sq.mu.inits <- runif(p.re, 0.5, 10)
beta.star.inits <- rnorm(n.re, 0, sqrt(sigma.sq.mu.inits[beta.star.indx + 1]))
}
tau.sq.inits <- runif(1, 0.1, 10)
}
storage.mode(chain.info) <- "integer"
# Run the model in C
out.tmp[[i]] <- .Call("spAbundGaussianNNGP", y, X, coords, X.re, X.random,
consts, n.re.long,
n.neighbors, nn.indx, nn.indx.lu, u.indx, u.indx.lu, ui.indx,
beta.inits, tau.sq.inits, sigma.sq.mu.inits, beta.star.inits,
w.inits, phi.inits, sigma.sq.inits, nu.inits,
beta.star.indx, beta.level.indx, mu.beta,
Sigma.beta, tau.sq.a, tau.sq.b, phi.a, phi.b,
sigma.sq.a, sigma.sq.b, nu.a, nu.b,
sigma.sq.mu.a, sigma.sq.mu.b,
tuning.c, cov.model.indx,
n.batch, batch.length,
accept.rate, n.omp.threads, verbose, n.report,
samples.info, chain.info, sigma.sq.ig)
chain.info[1] <- chain.info[1] + 1
seeds.list[[i]] <- .Random.seed
}
# Calculate R-Hat ---------------
out$rhat <- list()
if (n.chains > 1) {
# as.vector removes the "Upper CI" when there is only 1 variable.
out$rhat$beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$tau.sq <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$tau.sq.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$theta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$theta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2]
if (p.re > 0) {
out$rhat$sigma.sq.mu <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.mu.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
} else {
out$rhat$beta <- rep(NA, p)
out$rhat$tau.sq <- NA
out$rhat$theta <- rep(NA, ifelse(cov.model == 'matern', 3, 2))
if (p.re > 0) {
out$rhat$sigma.sq.mu <- rep(NA, p.re)
}
}
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- x.names
out$theta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$theta.samples))))
if (cov.model != 'matern') {
colnames(out$theta.samples) <- c('sigma.sq', 'phi')
} else {
colnames(out$theta.samples) <- c('sigma.sq', 'phi', 'nu')
}
out$tau.sq.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$tau.sq.samples))))
colnames(out$tau.sq.samples) <- 'tau.sq'
# Get everything back in the original order
out$coords <- coords[order(ord), ]
if (save.fitted) {
if (!two.stage) {
out$y.rep.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$y.rep.samples))))
out$y.rep.samples <- mcmc(out$y.rep.samples[, order(ord), drop = FALSE])
out$like.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$like.samples))))
out$like.samples <- mcmc(out$like.samples[, order(ord), drop = FALSE])
} else {
y.rep.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$y.rep.samples))))
y.rep.samples <- mcmc(y.rep.samples[, order(ord), drop = FALSE])
like.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$like.samples))))
like.samples <- mcmc(like.samples[, order(ord), drop = FALSE])
y.rep.zero.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$y.rep.zero.samples))))
out$y.rep.samples <- matrix(NA, n.post.samples * n.chains, J.est + J.zero)
out$y.rep.samples[, z.indx] <- y.rep.samples
out$y.rep.samples[, -z.indx] <- y.rep.zero.samples
out$y.rep.samples <- mcmc(out$y.rep.samples)
out$like.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$like.samples))))
out$like.samples <- mcmc(out$like.samples[, order(ord), drop = FALSE])
}
out$mu.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$mu.samples))))
out$mu.samples <- mcmc(out$mu.samples[, order(ord), drop = FALSE])
}
out$X <- X[order(ord), , drop = FALSE]
out$X.re <- X.re[order(ord), , drop = FALSE]
out$w.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$w.samples))))
out$w.samples <- mcmc(out$w.samples[, order(ord), drop = FALSE])
out$y <- y.orig
if (p.re > 0) {
out$sigma.sq.mu.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.mu.samples))))
colnames(out$sigma.sq.mu.samples) <- x.re.names
out$beta.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
tmp.names <- unlist(re.level.names)
beta.star.names <- paste(rep(x.re.names, n.re.long), tmp.names, sep = '-')
colnames(out$beta.star.samples) <- beta.star.names
out$re.level.names <- re.level.names
}
# Calculate effective sample sizes
out$ESS <- list()
out$ESS$beta <- effectiveSize(out$beta.samples)
out$ESS$tau.sq <- effectiveSize(out$tau.sq.samples)
out$ESS$theta <- effectiveSize(out$theta.samples)
if (p.re > 0) {
out$ESS$sigma.sq.mu <- effectiveSize(out$sigma.sq.mu.samples)
}
out$call <- cl
out$n.samples <- batch.length * n.batch
out$n.neighbors <- n.neighbors
out$cov.model.indx <- cov.model.indx
out$type <- "NNGP"
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
out$re.cols <- re.cols
out$dist <- family
if (p.re > 0) {
out$muRE <- TRUE
} else {
out$muRE <- FALSE
}
} # NNGP or GP
class(out) <- "spAbund"
out$run.time <- proc.time() - ptm
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.