Nothing
svcAbund <- function(formula, data, inits, priors, tuning, svc.cols = 1,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb',
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE,
n.report = 100, n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, save.fitted = TRUE, ...){
ptm <- proc.time()
if (!(family) %in% c('Poisson', 'NB', 'Gaussian', 'zi-Gaussian')) {
stop("family must be either 'Poisson', 'NB', 'Gaussian', or 'zi-Gaussian'")
}
if (family %in% c('Gaussian', 'zi-Gaussian')) {
svcAbundGaussian(formula, data, inits, priors, tuning, svc.cols, cov.model, NNGP,
n.neighbors, search.type, n.batch, batch.length, accept.rate,
family, n.omp.threads, verbose, n.report, n.burn, n.thin,
n.chains)
} else {
# Make it look nice
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing to run the model\n");
cat("----------------------------------------\n");
}
# Functions ---------------------------------------------------------------
logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
rigamma <- function(n, a, b){
1/rgamma(n = n, shape = a, rate = b)
}
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Call ----------------------------------------------------------------
# Returns a call in which all of the specified arguments are
# specified by their full names.
cl <- match.call()
# Some initial checks -------------------------------------------------
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
if (missing(formula)) {
stop("error: formula must be specified")
}
if (!'y' %in% names(data)) {
stop("error: data y must be specified in data")
}
y <- as.matrix(data$y)
# Offset
if ('offset' %in% names(data)) {
offset <- data$offset
if (length(offset) == 1) {
offset <- matrix(offset, nrow(y), ncol(y))
} else if (length(dim(offset)) == 1) { # Value for each site
if (length(offset) != nrow(y)) {
stop(paste0("offset must be a single value, vector of length ", nrow(y), " or a matrix with ",
nrow(y), " rows and ", ncol(y), " columns."))
}
offset <- matrix(offset, nrow(y), ncol(y))
} else if (length(dim(offset)) == 2) { # Value for each site/obs
if (nrow(offset) != nrow(y) | ncol(offset) != ncol(y)) {
stop(paste0("offset must be a single value, vector of length ", nrow(y), " or a matrix with ",
nrow(y), " rows and ", ncol(y), " columns."))
}
}
} else {
offset <- matrix(1, nrow(y), ncol(y))
}
if (!'covs' %in% names(data)) {
if (formula == ~ 1) {
if (verbose) {
message("abundance covariates (covs) not specified in data.\nAssuming intercept only abundance model.\n")
}
data$covs <- list(int = array(1, dim = dim(y)))
} else {
stop("error: covs must be specified in data for an abundance model with covariates")
}
}
if (!is.list(data$covs)) {
stop("error: covs must be a list of matrices, data frames, and/or vectors")
}
if (!'coords' %in% names(data)) {
stop("error: coords must be specified in data for a spatial GLMM.")
}
if (!is.matrix(data$coords) & !is.data.frame(data$coords)) {
stop("error: coords must be a matrix or data frame")
}
coords <- as.matrix(data$coords)
if (missing(n.batch)) {
stop("error: must specify number of MCMC batches")
}
if (missing(batch.length)) {
stop("error: must specify length of each MCMC batch")
}
n.samples <- n.batch * batch.length
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
# Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
}
if (!(family) %in% c('Poisson', 'NB')) {
stop("family must be either 'Poisson' or 'NB'")
}
if (family == 'NB' & verbose) {
message('**NOTE**: spatial negative binomial models can be difficult to\nestimate as they contain two forms of overdispersion. If experiencing\nvery poor mixing/convergence of MCMC chains (particularly kappa and phi),\nconsider using a spatial Poisson model or more informative\npriors on kappa or phi.\n')
}
# Neighbors and Ordering ----------------------------------------------
if (NNGP) {
u.search.type <- 2
## Order by x column. Could potentially allow this to be user defined.
ord <- order(coords[,1])
# Reorder everything to align with NN ordering
y <- y[ord, , drop = FALSE]
offset <- offset[ord, , drop = FALSE]
coords <- coords[ord, , drop = FALSE]
# Covariates
for (i in 1:length(data$covs)) {
if (!is.null(dim(data$covs[[i]]))) {
data$covs[[i]] <- data$covs[[i]][ord, , drop = FALSE]
} else {
data$covs[[i]] <- data$covs[[i]][ord]
}
}
}
y.mat <- y
offset.mat <- offset
# First subset covariates to only use those that are included in the analysis.
# Get occurrence covariates in proper format
# Subset covariates to only use those that are included in the analysis
data$covs <- data$covs[names(data$covs) %in% all.vars(formula)]
# Null model support
if (length(data$covs) == 0) {
data$covs <- list(int = matrix(1, nrow = dim(y)[1], ncol = dim(y)[2]))
}
# Ordered by rep, then site within rep
data$covs <- data.frame(lapply(data$covs, function(a) unlist(c(a))))
# Check if only site-level covariates are included
if (nrow(data$covs) == dim(y)[1]) {
data$covs <- as.data.frame(lapply(data$covs, rep, dim(y)[2]))
}
# Check whether random effects are sent in as numeric, and
# return error if they are.
# Abundance -------------------------
if (!is.null(findbars(formula))) {
abund.re.names <- unique(unlist(sapply(findbars(formula), all.vars)))
for (i in 1:length(abund.re.names)) {
if (is(data$covs[, abund.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", abund.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$covs[, abund.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", abund.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Checking missing values ---------------------------------------------
# y -------------------------------
y.na.test <- apply(y, 1, function(a) sum(!is.na(a)))
if (sum(y.na.test == 0) > 0) {
stop("error: some sites in y have all missing detection histories. Remove these sites from all objects in the 'data' argument, then use 'predict' to obtain predictions at these locations if desired.")
}
# covs ------------------------------
for (i in 1:ncol(data$covs)) {
if (sum(is.na(data$covs[, i])) > sum(is.na(y))) {
stop("error: some elements in covs have missing values where there is an observed data value in y. Please either replace the NA values in covs with non-missing values (e.g., mean imputation) or set the corresponding values in y to NA where the covariate is missing.")
}
}
# Misalignment between y and covs
y.missing <- which(is.na(y))
covs.missing <- lapply(data$covs, function(a) which(is.na(a)))
for (i in 1:length(covs.missing)) {
tmp.indx <- !(y.missing %in% covs.missing[[i]])
if (sum(tmp.indx) > 0) {
if (i == 1 & verbose) {
message("There are missing values in data$y with corresponding non-missing values in data$covs.\nRemoving these site/replicate combinations for fitting the model.")
}
data$covs[y.missing, i] <- NA
}
}
# Remove missing values in covariates prior to sending to parseFormula
if (length(unique(unlist(covs.missing))) > 0) {
data$covs <- data$covs[-c(unique(unlist(covs.missing))), , drop = FALSE]
}
# Check save.fitted ---------------------------------------------------
if (!(save.fitted %in% c(TRUE, FALSE))) {
stop("save.fitted must be either TRUE or FALSE")
}
# Formula -------------------------------------------------------------
# Abundance -------------------------
if (is(formula, 'formula')) {
tmp <- parseFormula(formula, data$covs)
X <- as.matrix(tmp[[1]])
X.re <- as.matrix(tmp[[4]])
x.re.names <- colnames(X.re)
x.names <- tmp[[2]]
X.random <- as.matrix(tmp[[5]])
x.random.names <- colnames(X.random)
} else {
stop("error: formula is misspecified")
}
# Get RE level names
re.level.names <- lapply(data$covs[, x.re.names, drop = FALSE],
function (a) sort(unique(a)))
x.re.names <- x.random.names
# Get basic info from inputs ------------------------------------------
# Number of sites
J <- nrow(y)
# Number of abundance parameters
p.abund <- ncol(X)
# Number of abundance random effect parameters
p.abund.re <- ncol(X.re)
# Number of latent abundance random effect values
n.abund.re <- length(unlist(apply(X.re, 2, unique)))
n.abund.re.long <- apply(X.re, 2, function(a) length(unique(a)))
# Number of replicates at each site
n.rep <- apply(y, 1, function(a) sum(!is.na(a)))
# Max number of repeat visits
K.max <- ncol(y)
# Because I like K better than n.rep
K <- n.rep
# Get indices to map N to y ---------------------------------------------
site.indx <- rep(1:J, dim(y)[2])
site.indx <- site.indx[!is.na(c(y))]
# Subtract 1 for indices in C
site.indx <- site.indx - 1
y <- c(y)
offset <- c(offset)
names.long <- which(!is.na(y))
# Remove missing observations when the covariate data are available but
# there are missing abundance data.
if (nrow(X) == length(y)) {
X <- X[!is.na(y), , drop = FALSE]
}
if (nrow(X.re) == length(y) & p.abund.re > 0) {
X.re <- X.re[!is.na(y), , drop = FALSE]
}
if (nrow(X.random) == length(y) & p.abund.re > 0) {
X.random <- X.random[!is.na(y), , drop = FALSE]
}
y <- y[!is.na(y.mat)]
offset <- offset[!is.na(y.mat)]
# Number of data points for the y vector
n.obs <- nrow(X)
# Check SVC columns -----------------------------------------------------
if (is.character(svc.cols)) {
# Check if all column names in svc are in covs
if (!all(svc.cols %in% x.names)) {
missing.cols <- svc.cols[!(svc.cols %in% x.names)]
stop(paste("error: variable name ",
paste(missing.cols, collapse=" and "), " not inurrence covariates", sep=""))
}
# Convert desired column names into the numeric column index
svc.cols <- (1:p.abund)[x.names %in% svc.cols]
} else if (is.numeric(svc.cols)) {
# Check if all column indices are in 1:p.abund
if (!all(svc.cols %in% 1:p.abund)) {
missing.cols <- svc.cols[!(svc.cols %in% (1:p.abund))]
stop(paste("error: column index ",
paste(missing.cols, collapse=" "), " not in design matrix columns", sep=""))
}
}
p.svc <- length(svc.cols)
# Get random effect matrices all set ----------------------------------
X.re <- X.re - 1
if (p.abund.re > 1) {
# Subtract 1 for C
for (j in 2:p.abund.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
}
}
# Priors --------------------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# beta -----------------------
if ("beta.normal" %in% names(priors)) {
if (!is.list(priors$beta.normal) | length(priors$beta.normal) != 2) {
stop("error: beta.normal must be a list of length 2")
}
mu.beta <- priors$beta.normal[[1]]
sigma.beta <- priors$beta.normal[[2]]
if (length(mu.beta) != p.abund & length(mu.beta) != 1) {
if (p.abund == 1) {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.abund, " with elements corresponding to betas' mean", sep = ""))
} else {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.abund, " or 1 with elements corresponding to betas' mean", sep = ""))
}
}
if (length(sigma.beta) != p.abund & length(sigma.beta) != 1) {
if (p.abund == 1) {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.abund, " with elements corresponding to betas' variance", sep = ""))
} else {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.abund, " or 1 with elements corresponding to betas' variance", sep = ""))
}
}
if (length(sigma.beta) != p.abund) {
sigma.beta <- rep(sigma.beta, p.abund)
}
if (length(mu.beta) != p.abund) {
mu.beta <- rep(mu.beta, p.abund)
}
Sigma.beta <- sigma.beta * diag(p.abund)
} else {
if (verbose) {
message("No prior specified for beta.normal.\nSetting prior mean to 0 and prior variance to 100\n")
}
mu.beta <- rep(0, p.abund)
sigma.beta <- rep(100, p.abund)
Sigma.beta <- diag(p.abund) * sigma.beta
}
# sigma.sq.mu --------------------
if (p.abund.re > 0) {
if ("sigma.sq.mu.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.mu.ig) | length(priors$sigma.sq.mu.ig) != 2) {
stop("error: sigma.sq.mu.ig must be a list of length 2")
}
sigma.sq.mu.a <- priors$sigma.sq.mu.ig[[1]]
sigma.sq.mu.b <- priors$sigma.sq.mu.ig[[2]]
if (length(sigma.sq.mu.a) != p.abund.re & length(sigma.sq.mu.a) != 1) {
if (p.abund.re == 1) {
stop(paste("error: sigma.sq.mu.ig[[1]] must be a vector of length ",
p.abund.re, " with elements corresponding to sigma.sq.mus' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.mu.ig[[1]] must be a vector of length ",
p.abund.re, " or 1 with elements corresponding to sigma.sq.mus' shape", sep = ""))
}
}
if (length(sigma.sq.mu.b) != p.abund.re & length(sigma.sq.mu.b) != 1) {
if (p.abund.re == 1) {
stop(paste("error: sigma.sq.mu.ig[[2]] must be a vector of length ",
p.abund.re, " with elements corresponding to sigma.sq.mus' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.mu.ig[[2]] must be a vector of length ",
p.abund.re, " or 1with elements corresponding to sigma.sq.mus' scale", sep = ""))
}
}
if (length(sigma.sq.mu.a) != p.abund.re) {
sigma.sq.mu.a <- rep(sigma.sq.mu.a, p.abund.re)
}
if (length(sigma.sq.mu.b) != p.abund.re) {
sigma.sq.mu.b <- rep(sigma.sq.mu.b, p.abund.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.mu.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.mu.a <- rep(0.1, p.abund.re)
sigma.sq.mu.b <- rep(0.1, p.abund.re)
}
} else {
sigma.sq.mu.a <- 0
sigma.sq.mu.b <- 0
}
# kappa -----------------------------
if (family == 'NB') {
if ("kappa.unif" %in% names(priors)) {
if (!is.vector(priors$kappa.unif) | !is.atomic(priors$kappa.unif) | length(priors$kappa.unif) != 2) {
stop("error: kappa.unif must be a vector of length 2 with elements corresponding to kappa's lower and upper bounds")
}
kappa.a <- priors$kappa.unif[1]
kappa.b <- priors$kappa.unif[2]
} else {
if (verbose) {
message("No prior specified for kappa.unif.\nSetting uniform bounds of 0 and 100.\n")
}
kappa.a <- 0
kappa.b <- 100
}
} else {
kappa.a <- 0
kappa.b <- 0
}
# phi -----------------------------
# Get distance matrix which is used if priors are not specified
if ("phi.unif" %in% names(priors)) {
if (!is.list(priors$phi.unif) | length(priors$phi.unif) != 2) {
stop("error: phi.unif must be a list of length 2")
}
phi.a <- priors$phi.unif[[1]]
phi.b <- priors$phi.unif[[2]]
if (length(phi.a) != p.svc & length(phi.a) != 1) {
stop(paste("error: phi.unif[[1]] must be a vector of length ",
p.svc,
" or 1 with elements corresponding to phis' lower bound for each covariate with spatially-varying coefficients",
sep = ""))
}
if (length(phi.b) != p.svc & length(phi.b) != 1) {
stop(paste("error: phi.unif[[2]] must be a vector of length ",
p.svc,
" or 1 with elements corresponding to phis' upper bound for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(phi.a) != p.svc) {
phi.a <- rep(phi.a, p.svc)
}
if (length(phi.b) != p.svc) {
phi.b <- rep(phi.b, p.svc)
}
} else {
if (verbose) {
message("No prior specified for phi.unif.\nSetting uniform bounds based on the range of observed spatial coordinates.\n")
}
coords.D <- iDist(coords)
phi.a <- rep(3 / max(coords.D), p.svc)
phi.b <- rep(3 / sort(unique(c(coords.D)))[2], p.svc)
}
# sigma.sq -----------------------------
if ("sigma.sq.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.ig) | length(priors$sigma.sq.ig) != 2) {
stop("error: sigma.sq.ig must be a list of length 2")
}
sigma.sq.a <- priors$sigma.sq.ig[[1]]
sigma.sq.b <- priors$sigma.sq.ig[[2]]
if (length(sigma.sq.a) != p.svc & length(sigma.sq.a) != 1) {
stop(paste("error: sigma.sq.ig[[1]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to sigma.sqs' shape for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(sigma.sq.b) != p.svc & length(sigma.sq.b) != 1) {
stop(paste("error: sigma.sq.ig[[2]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to sigma.sqs' scale for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(sigma.sq.a) != p.svc) {
sigma.sq.a <- rep(sigma.sq.a, p.svc)
}
if (length(sigma.sq.b) != p.svc) {
sigma.sq.b <- rep(sigma.sq.b, p.svc)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.ig.\nSetting the shape parameter to 2 and scale parameter to 1.\n")
}
sigma.sq.a <- rep(2, p.svc)
sigma.sq.b <- rep(1, p.svc)
}
# nu -----------------------------
if (cov.model == "matern") {
if (!"nu.unif" %in% names(priors)) {
stop("error: nu.unif must be specified in priors value list")
}
nu.a <- priors$nu.unif[[1]]
nu.b <- priors$nu.unif[[2]]
if (!is.list(priors$nu.unif) | length(priors$nu.unif) != 2) {
stop("error: nu.unif must be a list of length 2")
}
if (length(nu.a) != p.svc & length(nu.a) != 1) {
stop(paste("error: nu.unif[[1]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to nus' lower bound for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(nu.b) != p.svc & length(nu.b) != 1) {
stop(paste("error: nu.unif[[2]] must be a vector of length ",
p.svc, " or 1 with elements corresponding to nus' upper bound for each covariate with spatially-varying coefficients", sep = ""))
}
if (length(nu.a) != p.svc) {
nu.a <- rep(nu.a, p.svc)
}
if (length(nu.b) != p.svc) {
nu.b <- rep(nu.b, p.svc)
}
} else {
nu.a <- rep(0, p.svc)
nu.b <- rep(0, p.svc)
}
# Starting values -----------------------------------------------------
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
# beta -----------------------
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (length(beta.inits) != p.abund & length(beta.inits) != 1) {
if (p.abund == 1) {
stop(paste("error: initial values for beta must be of length ", p.abund,
sep = ""))
} else {
stop(paste("error: initial values for beta must be of length ", p.abund, " or 1",
sep = ""))
}
}
if (length(beta.inits) != p.abund) {
beta.inits <- rep(beta.inits, p.abund)
}
} else {
beta.inits <- rnorm(p.abund, 0, 1)
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from a standard normal distribution\n')
}
}
# sigma.sq.mu -------------------
if (p.abund.re > 0) {
if ("sigma.sq.mu" %in% names(inits)) {
sigma.sq.mu.inits <- inits[["sigma.sq.mu"]]
if (length(sigma.sq.mu.inits) != p.abund.re & length(sigma.sq.mu.inits) != 1) {
if (p.abund.re == 1) {
stop(paste("error: initial values for sigma.sq.mu must be of length ", p.abund.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.mu must be of length ", p.abund.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.mu.inits) != p.abund.re) {
sigma.sq.mu.inits <- rep(sigma.sq.mu.inits, p.abund.re)
}
} else {
sigma.sq.mu.inits <- runif(p.abund.re, 0.05, 1)
if (verbose) {
message("sigma.sq.mu is not specified in initial values.\nSetting initial values to random values between 0.05 and 1\n")
}
}
beta.star.indx <- rep(0:(p.abund.re - 1), n.abund.re.long)
beta.star.inits <- rnorm(n.abund.re, 0, sqrt(sigma.sq.mu.inits[beta.star.indx + 1]))
} else {
sigma.sq.mu.inits <- 0
beta.star.indx <- 0
beta.star.inits <- 0
}
# kappa ---------------------------
if (family == 'NB') {
if ("kappa" %in% names(inits)) {
kappa.inits <- inits[["kappa"]]
if (length(kappa.inits) != 1) {
stop("error: initial values for kappa must be of length 1")
}
} else {
kappa.inits <- runif(1, kappa.a, kappa.b)
if (verbose) {
message("kappa is not specified in initial values.\nSetting initial value to random value from the prior distribution\n")
}
}
} else {
kappa.inits <- 0
}
# phi -----------------------------
if ("phi" %in% names(inits)) {
phi.inits <- inits[["phi"]]
if (length(phi.inits) != p.svc & length(phi.inits) != 1) {
stop(paste("error: initial values for phi must be of length ", p.svc, " or 1",
sep = ""))
}
if (length(phi.inits) != p.svc) {
phi.inits <- rep(phi.inits, p.svc)
}
} else {
phi.inits <- runif(p.svc, phi.a, phi.b)
if (verbose) {
message("phi is not specified in initial values.\nSetting initial value to random values from the prior distribution\n")
}
}
# sigma.sq ------------------------
if ("sigma.sq" %in% names(inits)) {
sigma.sq.inits <- inits[["sigma.sq"]]
if (length(sigma.sq.inits) != p.svc & length(sigma.sq.inits) != 1) {
stop(paste("error: initial values for sigma.sq must be of length ", p.svc, " or 1",
sep = ""))
}
if (length(sigma.sq.inits) != p.svc) {
sigma.sq.inits <- rep(sigma.sq.inits, p.svc)
}
} else {
sigma.sq.inits <- rigamma(p.svc, sigma.sq.a, sigma.sq.b)
if (verbose) {
message("sigma.sq is not specified in initial values.\nSetting initial values to random values from the prior distribution\n")
}
}
# w -----------------------------
if ("w" %in% names(inits)) {
w.inits <- inits[["w"]]
if (!is.matrix(w.inits)) {
stop(paste("error: initial values for w must be a matrix with dimensions ",
p.svc, " x ", J, sep = ""))
}
if (nrow(w.inits) != p.svc | ncol(w.inits) != J) {
stop(paste("error: initial values for w must be a matrix with dimensions ",
p.svc, " x ", J, sep = ""))
}
if (NNGP) {
w.inits <- w.inits[, ord, drop = FALSE]
}
} else {
w.inits <- matrix(0, p.svc, J)
if (verbose) {
message("w is not specified in initial values.\nSetting initial value to 0\n")
}
}
# nu ------------------------
if ("nu" %in% names(inits)) {
nu.inits <- inits[["nu"]]
if (length(nu.inits) != p.svc & length(nu.inits) != 1) {
stop(paste("error: initial values for nu must be of length ", p.svc, " or 1",
sep = ""))
}
if (length(nu.inits) != p.svc) {
nu.inits <- rep(nu.inits, p.svc)
}
} else {
if (cov.model == 'matern') {
if (verbose) {
message("nu is not specified in initial values.\nSetting initial values to random values from the prior distribution\n")
}
nu.inits <- runif(p.svc, nu.a, nu.b)
} else {
nu.inits <- rep(0, p.svc)
}
}
# Should initial values be fixed --
if ("fix" %in% names(inits)) {
fix.inits <- inits[["fix"]]
if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
stop(paste("error: inits$fix must take value TRUE or FALSE"))
}
} else {
fix.inits <- FALSE
}
if (verbose & fix.inits & (n.chains > 1)) {
message("Fixing initial values across all chains\n")
}
# Prep for SVCs ---------------------------------------------------------
X.w <- X[, svc.cols, drop = FALSE]
# Covariance Model ----------------------------------------------------
# Order must match util.cpp spCor.
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")}
# Obo for cov model lookup on c side
cov.model.indx <- which(cov.model == cov.model.names) - 1
storage.mode(cov.model.indx) <- "integer"
# Get tuning values ---------------------------------------------------
sigma.sq.tuning <- rep(0, p.svc)
beta.tuning <- 0
w.tuning <- 0
phi.tuning <- 0
nu.tuning <- 0
kappa.tuning <- 0
beta.star.tuning <- 0
if (missing(tuning)) {
phi.tuning <- rep(1, p.svc)
kappa.tuning <- 1
beta.tuning <- rep(1, p.abund)
beta.star.tuning <- rep(1, n.abund.re)
w.tuning <- rep(1, J * p.svc)
if (cov.model == 'matern') {
nu.tuning <- rep(1, p.svc)
}
} else {
names(tuning) <- tolower(names(tuning))
# phi ---------------------------
if(!"phi" %in% names(tuning)) {
stop("error: phi must be specified in tuning value list")
}
phi.tuning <- tuning$phi
if (length(phi.tuning) == 1) {
phi.tuning <- rep(tuning$phi, p.svc)
} else if (length(phi.tuning) != p.svc) {
stop(paste("error: phi tuning must be either a single value or a vector of length ",
p.svc, sep = ""))
}
if (family == 'NB') {
# kappa ---------------------------
if(!"kappa" %in% names(tuning)) {
stop("error: kappa must be specified in tuning value list")
}
kappa.tuning <- tuning$kappa
if (length(kappa.tuning) != 1) {
stop("error: kappa tuning must be a single value")
}
}
if (cov.model == 'matern') {
# nu --------------------------
if(!"nu" %in% names(tuning)) {
stop("error: nu must be specified in tuning value list")
}
nu.tuning <- tuning$nu
if (length(nu.tuning) == 1) {
nu.tuning <- rep(tuning$nu, p.svc)
} else if (length(nu.tuning) != p.svc) {
stop(paste("error: nu tuning must be either a single value or a vector of length ",
p.svc, sep = ""))
}
} else {
nu.tuning <- NULL
}
# beta ---------------------------
if(!"beta" %in% names(tuning)) {
stop("error: beta must be specified in tuning value list")
}
beta.tuning <- tuning$beta
if (length(beta.tuning) != 1 & length(beta.tuning) != p.abund) {
stop(paste("error: beta tuning must be a single value or a vector of length ",
p.abund, sep = ''))
}
if (length(beta.tuning) == 1) {
beta.tuning <- rep(beta.tuning, p.abund)
}
# w ---------------------------
if(!"w" %in% names(tuning)) {
stop("error: w must be specified in tuning value list")
}
w.tuning <- tuning$w
if (length(w.tuning) != 1 & length(w.tuning) != (J * p.svc)) {
stop(paste("error: w tuning must be a single value or a vector of length ",
J * p.svc, sep = ''))
}
if (length(w.tuning) == 1) {
w.tuning <- rep(w.tuning, J * p.svc)
}
if (p.abund.re > 0) {
# beta.star ---------------------------
if(!"beta.star" %in% names(tuning)) {
stop("error: beta.star must be specified in tuning value list")
}
beta.star.tuning <- tuning$beta.star
if (length(beta.star.tuning) != 1) {
stop("error: beta.star tuning must be a single value")
}
beta.star.tuning <- rep(beta.star.tuning, n.abund.re)
} else {
beta.star.tuning <- NULL
}
}
# Log the tuning values since they are used in the AMCMC.
tuning.c <- log(c(beta.tuning, sigma.sq.tuning, phi.tuning,
nu.tuning, w.tuning, beta.star.tuning,
kappa.tuning))
curr.chain <- 1
if (!NNGP) {
stop("svcAbund is currently only implemented with NNGPs. Please set NNGP = TRUE")
} else {
# Nearest Neighbor Search ---------------------------------------------
if(verbose){
cat("----------------------------------------\n");
cat("\tBuilding the neighbor list\n");
cat("----------------------------------------\n");
}
search.type.names <- c("brute", "cb")
if(!search.type %in% search.type.names){
stop("error: specified search.type '",search.type,
"' is not a valid option; choose from ",
paste(search.type.names, collapse=", ", sep="") ,".")
}
storage.mode(n.neighbors) <- "integer"
storage.mode(n.omp.threads) <- "integer"
## Indexes
if(search.type == "brute"){
indx <- mkNNIndx(coords, n.neighbors, n.omp.threads)
} else{
indx <- mkNNIndxCB(coords, n.neighbors, n.omp.threads)
}
nn.indx <- indx$nnIndx
nn.indx.lu <- indx$nnIndxLU
nn.indx.run.time <- indx$run.time
storage.mode(nn.indx) <- "integer"
storage.mode(nn.indx.lu) <- "integer"
storage.mode(u.search.type) <- "integer"
storage.mode(J) <- "integer"
# Other miscellaneous ---------------------------------------------------
# For prediction with random slopes
re.cols <- list()
if (p.abund.re > 0) {
split.names <- strsplit(x.re.names, "[-]")
for (j in 1:p.abund.re) {
re.cols[[j]] <- split.names[[j]][1]
names(re.cols)[j] <- split.names[[j]][2]
}
}
if(verbose){
cat("----------------------------------------\n");
cat("Building the neighbors of neighbors list\n");
cat("----------------------------------------\n");
}
indx <- mkUIndx(J, n.neighbors, nn.indx, nn.indx.lu, u.search.type)
u.indx <- indx$u.indx
u.indx.lu <- indx$u.indx.lu
ui.indx <- indx$ui.indx
u.indx.run.time <- indx$run.time
# Set storage for all variables ---------------------------------------
storage.mode(y) <- "double"
storage.mode(X) <- "double"
storage.mode(X.w) <- 'double'
storage.mode(offset) <- "double"
consts <- c(J, n.obs, p.abund, p.abund.re, n.abund.re, save.fitted, p.svc)
storage.mode(consts) <- "integer"
storage.mode(coords) <- "double"
storage.mode(K) <- "double"
storage.mode(beta.inits) <- "double"
storage.mode(kappa.inits) <- "double"
storage.mode(phi.inits) <- "double"
storage.mode(sigma.sq.inits) <- "double"
storage.mode(nu.inits) <- "double"
storage.mode(w.inits) <- "double"
storage.mode(site.indx) <- "integer"
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(kappa.a) <- "double"
storage.mode(kappa.b) <- "double"
storage.mode(phi.a) <- "double"
storage.mode(phi.b) <- "double"
storage.mode(nu.a) <- "double"
storage.mode(nu.b) <- "double"
storage.mode(sigma.sq.a) <- "double"
storage.mode(sigma.sq.b) <- "double"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(tuning.c) <- "double"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(nn.indx) <- "integer"
storage.mode(nn.indx.lu) <- "integer"
storage.mode(u.indx) <- "integer"
storage.mode(u.indx.lu) <- "integer"
storage.mode(ui.indx) <- "integer"
storage.mode(n.neighbors) <- "integer"
storage.mode(cov.model.indx) <- "integer"
chain.info <- c(curr.chain, n.chains)
storage.mode(chain.info) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
storage.mode(n.post.samples) <- "integer"
samples.info <- c(n.burn, n.thin, n.post.samples)
storage.mode(samples.info) <- "integer"
# For abundance random effects
storage.mode(X.re) <- "integer"
storage.mode(X.random) <- "double"
beta.level.indx <- sort(unique(c(X.re)))
storage.mode(beta.level.indx) <- "integer"
storage.mode(sigma.sq.mu.inits) <- "double"
storage.mode(sigma.sq.mu.a) <- "double"
storage.mode(sigma.sq.mu.b) <- "double"
storage.mode(beta.star.inits) <- "double"
storage.mode(beta.star.indx) <- "integer"
# NB = 1, Poisson = 0
family.c <- ifelse(family == 'NB', 1, 0)
storage.mode(family.c) <- "integer"
# Fit the model -------------------------------------------------------
out.tmp <- list()
out <- list()
for (i in 1:n.chains) {
# Change initial values if i > 1
if ((i > 1) & (!fix.inits)) {
beta.inits <- rnorm(p.abund, 0, 1)
if (p.abund.re > 0) {
sigma.sq.mu.inits <- runif(p.abund.re, 0.05, 1)
beta.star.inits <- rnorm(n.abund.re, 0, sqrt(sigma.sq.mu.inits[beta.star.indx + 1]))
}
if (family == 'NB') {
kappa.inits <- runif(1, kappa.a, kappa.b)
}
sigma.sq.inits <- runif(p.svc, 0.05, 3)
phi.inits <- runif(p.svc, phi.a, phi.b)
if (cov.model == 'matern') {
nu.inits <- runif(p.svc, nu.a, nu.b)
}
}
storage.mode(chain.info) <- "integer"
# Run the model in C
out.tmp[[i]] <- .Call("svcAbundNNGP", y, X, X.w, coords, X.re, X.random,
consts, n.abund.re.long,
n.neighbors, nn.indx, nn.indx.lu, u.indx, u.indx.lu,
beta.inits, kappa.inits,
sigma.sq.mu.inits, beta.star.inits, w.inits, phi.inits,
sigma.sq.inits, nu.inits, site.indx, beta.star.indx,
beta.level.indx, mu.beta, Sigma.beta,
kappa.a, kappa.b,
sigma.sq.mu.a, sigma.sq.mu.b,
phi.a, phi.b, sigma.sq.a, sigma.sq.b, nu.a, nu.b,
tuning.c, cov.model.indx, n.batch, batch.length, accept.rate,
n.omp.threads, verbose, n.report, samples.info, chain.info,
family.c, offset)
chain.info[1] <- chain.info[1] + 1
} # i
# Calculate R-Hat ---------------
out <- list()
out$rhat <- list()
if (n.chains > 1) {
# as.vector removes the "Upper CI" when there is only 1 variable.
out$rhat$beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
if (p.abund.re > 0) {
out$rhat$sigma.sq.mu <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.mu.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
if (family == 'NB') {
out$rhat$kappa <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$kappa.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
out$rhat$theta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$theta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2]
} else {
out$rhat$beta <- rep(NA, p.abund)
out$rhat$kappa <- NA
out$rhat$theta <- rep(NA, ifelse(cov.model == 'matern', 3 * p.svc, 2 * p.svc))
if (p.abund.re > 0) {
out$rhat$sigma.sq.mu <- rep(NA, p.abund.re)
}
}
# Put everything into MCMC objects
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- x.names
if (family == 'NB') {
out$kappa.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$kappa.samples))))
colnames(out$kappa.samples) <- c("kappa")
}
out$theta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$theta.samples))))
if (cov.model != 'matern') {
theta.names <- paste(rep(c('sigma.sq', 'phi'), each = p.svc), x.names[svc.cols], sep = '-')
} else {
theta.names <- paste(rep(c('sigma.sq', 'phi', 'nu'), each = p.svc), x.names[svc.cols], sep = '-')
}
colnames(out$theta.samples) <- theta.names
y.non.miss.indx <- which(!is.na(y.mat), arr.ind = TRUE)
if (save.fitted) {
out$y.rep.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$y.rep.samples))))
tmp <- array(NA, dim = c(n.post.samples * n.chains, J, ncol(y.mat)))
for (j in 1:n.obs) {
curr.indx <- y.non.miss.indx[j, ]
tmp[, curr.indx[1], curr.indx[2]] <- out$y.rep.samples[, j]
}
out$y.rep.samples <- tmp[, order(ord), , drop = FALSE]
out$mu.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$mu.samples))))
tmp <- array(NA, dim = c(n.post.samples * n.chains, J, ncol(y.mat)))
for (j in 1:n.obs) {
curr.indx <- y.non.miss.indx[j, ]
tmp[, curr.indx[1], curr.indx[2]] <- out$mu.samples[, j]
}
out$mu.samples <- tmp[, order(ord), , drop = FALSE]
out$like.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$like.samples))))
tmp <- array(NA, dim = c(n.post.samples * n.chains, J, ncol(y.mat)))
for (j in 1:n.obs) {
curr.indx <- y.non.miss.indx[j, ]
tmp[, curr.indx[1], curr.indx[2]] <- out$like.samples[, j]
}
out$like.samples <- tmp[, order(ord), , drop = FALSE]
}
# Account for case when intercept only spatial model.
if (p.svc == 1) {
tmp <- do.call(rbind, lapply(out.tmp, function(a) t(a$w.samples)))
tmp <- tmp[, order(ord), drop = FALSE]
out$w.samples <- array(NA, dim = c(p.svc, J, n.post.samples * n.chains))
out$w.samples[1, , ] <- t(tmp)
} else {
out$w.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$w.samples,
dim = c(p.svc, J, n.post.samples))))
out$w.samples <- out$w.samples[, order(ord), ]
}
out$w.samples <- aperm(out$w.samples, c(3, 1, 2))
if (p.abund.re > 0) {
out$sigma.sq.mu.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.mu.samples))))
colnames(out$sigma.sq.mu.samples) <- x.re.names
out$beta.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
tmp.names <- unlist(re.level.names)
beta.star.names <- paste(rep(x.re.names, n.abund.re.long), tmp.names, sep = '-')
colnames(out$beta.star.samples) <- beta.star.names
out$re.level.names <- re.level.names
}
# Calculate effective sample sizes
out$ESS <- list()
out$ESS$beta <- effectiveSize(out$beta.samples)
if (family == 'NB') {
out$ESS$kappa <- effectiveSize(out$kappa.samples)
}
out$ESS$theta <- effectiveSize(out$theta.samples)
if (p.abund.re > 0) {
out$ESS$sigma.sq.mu <- effectiveSize(out$sigma.sq.mu.samples)
}
out$X <- array(NA, dim = c(J, ncol(y.mat), p.abund))
out$X.re <- array(NA, dim = c(J, ncol(y.mat), p.abund.re))
out$X.w <- array(NA, dim = c(J, ncol(y.mat), p.svc))
for (j in 1:n.obs) {
curr.indx <- y.non.miss.indx[j, ]
out$X[curr.indx[1], curr.indx[2], ] <- X[j, ]
out$X.w[curr.indx[1], curr.indx[2], ] <- X.w[j, ]
if (p.abund.re > 0) {
out$X.re[curr.indx[1], curr.indx[2], ] <- X.re[j, ]
}
}
dimnames(out$X)[[3]] <- x.names
dimnames(out$X.w)[[3]] <- x.names[svc.cols]
dimnames(out$X.re)[[3]] <- colnames(X.re)
out$X <- out$X[order(ord), , , drop = FALSE]
out$X.w <- out$X.w[order(ord), , , drop = FALSE]
out$X.re <- out$X.re[order(ord), , , drop = FALSE]
out$coords <- coords[order(ord), ]
out$y <- y.mat[order(ord), , drop = FALSE]
out$offset <- offset.mat[order(ord), , drop = FALSE]
out$n.samples <- n.samples
out$call <- cl
out$n.post <- n.post.samples
out$n.neighbors <- n.neighbors
out$cov.model.indx <- cov.model.indx
out$svc.cols <- svc.cols
out$type <- "NNGP"
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
out$dist <- family
out$re.cols <- re.cols
if (p.abund.re > 0) {
out$muRE <- TRUE
} else {
out$muRE <- FALSE
}
} # NNGP
class(out) <- "svcAbund"
out$run.time <- proc.time() - ptm
out
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.