R/PGOcc.R

Defines functions PGOcc

Documented in PGOcc

PGOcc <- function(occ.formula, det.formula, data, inits, priors, 
                  n.samples, n.omp.threads = 1, verbose = TRUE,
                  n.report = 100, n.burn = round(.10 * n.samples), n.thin = 1, 
                  n.chains = 1, k.fold, k.fold.threads = 1, 
                  k.fold.seed = 100, k.fold.only = FALSE, ...){

  ptm <- proc.time()

  # Make it look nice
  if (verbose) {
    cat("----------------------------------------\n");
    cat("\tPreparing to run the model\n");
    cat("----------------------------------------\n");
  }

  # Functions ---------------------------------------------------------------
  logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
  logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
  rigamma <- function(n, a, b){
    1/rgamma(n = n, shape = a, rate = b)
  }

  # Check for unused arguments ------------------------------------------
  formal.args <- names(formals(sys.function(sys.parent())))
  elip.args <- names(list(...))
  for(i in elip.args){
      if(! i %in% formal.args)
          warning("'",i, "' is not an argument")
  }
  # Call ----------------------------------------------------------------
  # Returns a call in which all of the specified arguments are
  # specified by their full names.
  cl <- match.call()

  # Some initial checks -------------------------------------------------
  if (missing(data)) {
    stop("data must be specified")
  }
  if (!is.list(data)) {
    stop("data must be a list")
  }
  names(data) <- tolower(names(data))
  if (missing(occ.formula)) {
    stop("occ.formula must be specified")
  }
  if (missing(det.formula)) {
    stop("det.formula must be specified")
  }
  if (!'y' %in% names(data)) {
    stop("detection-nondetection data y must be specified in data")
  }
  y <- as.matrix(data$y)
  if (!'occ.covs' %in% names(data)) {
    if (occ.formula == ~ 1) {
      if (verbose) {
        message("occupancy covariates (occ.covs) not specified in data.\nAssuming intercept only occupancy model.\n")
      }
      data$occ.covs <- matrix(1, dim(y)[1], 1)
    } else {
      stop("occ.covs must be specified in data for an occupancy model with covariates")
    }
  }
  if (!is.matrix(data$occ.covs) & !is.data.frame(data$occ.covs)) {
    stop("occ.covs must be a matrix or data frame")
  }
  
  
  if (dim(y)[[1]] != dim(data$occ.covs)[[1]]){
    stop("number of sites in encounter history 'y' (J = ", dim(y)[[1]],
         ") does not match number of sites in site-specific covariates 'occ.covs' (J = ", 
         dim(data$occ.covs)[[1]], ").")
  }
  
  if (sum(is.na(data$occ.covs)) > 0) {
    stop("missing covariate values in data$occ.covs. Remove these sites from all data or impute non-missing values.")
  }
  if (!'det.covs' %in% names(data)) {
    if (det.formula == ~ 1) {
      if (verbose) {
        message("detection covariates (det.covs) not specified in data.\nAssuming interept only detection model.\n")
}
      data$det.covs <- list(int = rep(1, dim(y)[1]))
    } else {
      stop("det.covs must be specified in data for a detection model with covariates")
    }
  }
  if (!is.list(data$det.covs)) {
    stop("det.covs must be a list of matrices, data frames, and/or vectors")
  }
  
  if (missing(n.samples)) {
    stop("n.samples must be specified")
  }
  if (n.burn > n.samples) {
    stop("n.burn must be less than n.samples")
  }
  if (n.thin > n.samples) {
    stop("n.thin must be less than n.samples")
  }
  # Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
  if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
    stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
  }
  if (!missing(k.fold)) {
    if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
      stop("k.fold must be a single integer value >= 2")  
    }
  }

  # First subset detection covariates to only use those that are included in the analysis. 
  data$det.covs <- data$det.covs[names(data$det.covs) %in% all.vars(det.formula)]
  # Null model support
  if (length(data$det.covs) == 0) {
    data$det.covs <- list(int = rep(1, dim(y)[1]))
  }
  # Make both covariates a data frame. Unlist is necessary for when factors
  # are supplied. 
  data$det.covs <- data.frame(lapply(data$det.covs, function(a) unlist(c(a))))
  binom <- FALSE
  # Check if all detection covariates are at site level, and simplify the data
  # if necessary
  y.big <- y
  if (nrow(data$det.covs) == nrow(y)) {
   # Convert data to binomial form
   y <- apply(y, 1, sum, na.rm = TRUE) 
   binom <- TRUE
  }
  data$occ.covs <- as.data.frame(data$occ.covs)

  # Check whether random effects are sent in as numeric, and
  # return error if they are. 
  # Occurrence ----------------------
  if (!is.null(findbars(occ.formula))) {
    occ.re.names <- sapply(findbars(occ.formula), all.vars)
    for (i in 1:length(occ.re.names)) {
      if (is(data$occ.covs[, occ.re.names[i]], 'factor')) {
        stop(paste("random effect variable ", occ.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
      } 
      if (is(data$occ.covs[, occ.re.names[i]], 'character')) {
        stop(paste("random effect variable ", occ.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
      }
    }
  }
  # Detection -----------------------
  if (!is.null(findbars(det.formula))) {
    det.re.names <- sapply(findbars(det.formula), all.vars)
    for (i in 1:length(det.re.names)) {
      if (is(data$det.covs[, det.re.names[i]], 'factor')) {
        stop(paste("random effect variable ", det.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
      } 
      if (is(data$det.covs[, det.re.names[i]], 'character')) {
        stop(paste("random effect variable ", det.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
      }
    }
  }

  # Checking missing values ---------------------------------------------
  # y -------------------------------
  y.na.test <- apply(y.big, 1, function(a) sum(!is.na(a)))
  if (sum(y.na.test == 0) > 0) {
    stop("some sites in y have all missing detection histories. Remove these sites from all objects in the 'data' argument, then use 'predict' to obtain predictions at these locations if desired.")
  }
  # occ.covs ------------------------
  if (sum(is.na(data$occ.covs)) != 0) {
    stop("missing values in occ.covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).") 
  }
  # det.covs ------------------------
  if (!binom) {
    for (i in 1:ncol(data$det.covs)) {
      if (sum(is.na(data$det.covs[, i])) > sum(is.na(y.big))) {
        stop("some elements in det.covs have missing values where there is an observed data value in y. Please either replace the NA values in det.covs with non-missing values (e.g., mean imputation) or set the corresponding values in y to NA where the covariate is missing.") 
      }
    }
    # Misalignment between y and det.covs
    y.missing <- which(is.na(data$y))
    det.covs.missing <- lapply(data$det.covs, function(a) which(is.na(a)))
    for (i in 1:length(det.covs.missing)) {
      tmp.indx <- !(y.missing %in% det.covs.missing[[i]])
      if (sum(tmp.indx) > 0) {
        if (i == 1 & verbose) {
          message("There are missing values in data$y with corresponding non-missing values in data$det.covs.\nRemoving these site/replicate combinations for fitting the model.")
        }
        data$det.covs[y.missing, i] <- NA
      }
    }
  }
  # det.covs when binom == TRUE -----
  if (binom) {
    if (sum(is.na(data$det.covs)) != 0) {
      stop("missing values in site-level det.covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).") 
    }
  }

  # Formula -------------------------------------------------------------
  # Occupancy -----------------------
  if (is(occ.formula, 'formula')) {
    tmp <- parseFormula(occ.formula, data$occ.covs)
    X <- as.matrix(tmp[[1]])
    X.re <- as.matrix(tmp[[4]])
    x.re.names <- colnames(X.re)
    x.names <- tmp[[2]]
  } else {
    stop("occ.formula is misspecified")
  }
  # Get RE level names
  re.level.names <- lapply(data$occ.covs[, x.re.names, drop = FALSE],
		     function (a) sort(unique(a)))

  # Detection -----------------------
  if (is(det.formula, 'formula')) {
    tmp <- parseFormula(det.formula, data$det.covs)
    X.p <- as.matrix(tmp[[1]])
    X.p.re <- as.matrix(tmp[[4]])
    x.p.re.names <- colnames(X.p.re)
    x.p.names <- tmp[[2]]
  } else {
    stop("det.formula is misspecified")
  }
  p.re.level.names <- lapply(data$det.covs[, x.p.re.names, drop = FALSE],
		       function (a) sort(unique(a)))

  # Get basic info from inputs ------------------------------------------
  # Number of sites
  J <- nrow(y.big)
  # Number of occupancy parameters
  p.occ <- ncol(X)
  # Number of occupancy random effect parameters
  p.occ.re <- ncol(X.re)
  # Number of detection parameters
  p.det <- ncol(X.p)
  # Number of detection random effect parameters
  p.det.re <- ncol(X.p.re)
  # Number of latent occupancy random effect values
  n.occ.re <- length(unlist(apply(X.re, 2, unique)))
  n.occ.re.long <- apply(X.re, 2, function(a) length(unique(a)))
  # Number of latent detection random effect values
  n.det.re <- length(unlist(apply(X.p.re, 2, unique)))
  n.det.re.long <- apply(X.p.re, 2, function(a) length(unique(a)))
  if (p.det.re == 0) n.det.re.long <- 0
  # Number of replicates at each site
  n.rep <- apply(y.big, 1, function(a) sum(!is.na(a)))
  rep.indx <- list()
  for (j in 1:J) {
    rep.indx[[j]] <- which(!is.na(y.big[j, ]))
  }
  # Max number of repeat visits
  K.max <- max(n.rep)
  # Because I like K better than n.rep
  K <- n.rep

  # Get indices to map z to y -------------------------------------------
  if (!binom) {
    z.long.indx <- rep(1:J, dim(y.big)[2])
    z.long.indx <- z.long.indx[!is.na(c(y.big))]
    # Subtract 1 for indices in C
    z.long.indx <- z.long.indx - 1
  } else {
    z.long.indx <- 0:(J - 1)
  }
  # y is stored in the following order: species, site, visit
  y <- c(y)
  names.long <- which(!is.na(y))
  # Remove missing observations when the covariate data are available but
  # there are missing detection-nondetection data. 
  if (nrow(X.p) == length(y)) {
    X.p <- X.p[!is.na(y), , drop = FALSE]  
  }
  if (nrow(X.p.re) == length(y) & p.det.re > 0) {
    X.p.re <- X.p.re[!is.na(y), , drop = FALSE]
  }
  y <- y[!is.na(y)]
  # Number of data points for the y vector
  n.obs <- nrow(X.p)

  # Get random effect matrices all set ----------------------------------
  if (p.occ.re > 1) {
    for (j in 2:p.occ.re) {
      X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
    }
  }
  if (p.det.re > 1) {
    for (j in 2:p.det.re) {
      X.p.re[, j] <- X.p.re[, j] + max(X.p.re[, j - 1]) + 1
    }
  }
  # Priors --------------------------------------------------------------
  if (missing(priors)) {
    priors <- list()
  }
  names(priors) <- tolower(names(priors))
  # beta -----------------------
  if ("beta.normal" %in% names(priors)) {
    if (!is.list(priors$beta.normal) | length(priors$beta.normal) != 2) {
      stop("beta.normal must be a list of length 2")
    }
    mu.beta <- priors$beta.normal[[1]]
    sigma.beta <- priors$beta.normal[[2]]
    if (length(mu.beta) != p.occ & length(mu.beta) != 1) {
      if (p.occ == 1) {
        stop(paste("beta.normal[[1]] must be a vector of length ",
  	     p.occ, " with elements corresponding to betas' mean", sep = ""))
} else {
        stop(paste("beta.normal[[1]] must be a vector of length ",
  	     p.occ, " or 1 with elements corresponding to betas' mean", sep = ""))
      }
    }
    if (length(sigma.beta) != p.occ & length(sigma.beta) != 1) {
      if (p.occ == 1) {
        stop(paste("beta.normal[[2]] must be a vector of length ",
	   p.occ, " with elements corresponding to betas' variance", sep = ""))
      } else {
        stop(paste("beta.normal[[2]] must be a vector of length ",
	   p.occ, " or 1 with elements corresponding to betas' variance", sep = ""))
      }
    }
    if (length(sigma.beta) != p.occ) {
      sigma.beta <- rep(sigma.beta, p.occ)
    }
    if (length(mu.beta) != p.occ) {
      mu.beta <- rep(mu.beta, p.occ)
    }
    Sigma.beta <- sigma.beta * diag(p.occ)
  } else {
    if (verbose) {
      message("No prior specified for beta.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
    }
    mu.beta <- rep(0, p.occ)
    sigma.beta <- rep(2.72, p.occ)
    Sigma.beta <- diag(p.occ) * 2.72
  }
  # alpha -----------------------
  if ("alpha.normal" %in% names(priors)) {
    if (!is.list(priors$alpha.normal) | length(priors$alpha.normal) != 2) {
      stop("alpha.normal must be a list of length 2")
    }
    mu.alpha <- priors$alpha.normal[[1]]
    sigma.alpha <- priors$alpha.normal[[2]]
    if (length(mu.alpha) != p.det & length(mu.alpha) != 1) {
      if (p.det == 1) {
        stop(paste("alpha.normal[[1]] must be a vector of length ",
  	     p.det, " with elements corresponding to alphas' mean", sep = ""))
} else {
        stop(paste("alpha.normal[[1]] must be a vector of length ",
  	     p.det, " or 1 with elements corresponding to alphas' mean", sep = ""))
      }
    }
    if (length(sigma.alpha) != p.det & length(sigma.alpha) != 1) {
      if (p.det == 1) {
        stop(paste("alpha.normal[[2]] must be a vector of length ",
	   p.det, " with elements corresponding to alphas' variance", sep = ""))
      } else {
        stop(paste("alpha.normal[[2]] must be a vector of length ",
	   p.det, " or 1 with elements corresponding to alphas' variance", sep = ""))
      }
    }
    if (length(sigma.alpha) != p.det) {
      sigma.alpha <- rep(sigma.alpha, p.det)
    }
    if (length(mu.alpha) != p.det) {
      mu.alpha <- rep(mu.alpha, p.det)
    }
    Sigma.alpha <- sigma.alpha * diag(p.det)
  } else {
    if (verbose) {
      message("No prior specified for alpha.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
    }
    mu.alpha <- rep(0, p.det)
    sigma.alpha <- rep(2.72, p.det)
    Sigma.alpha <- diag(p.det) * 2.72
  }
  # sigma.sq.psi --------------------
  if (p.occ.re > 0) {
    if ("sigma.sq.psi.ig" %in% names(priors)) {
      if (!is.list(priors$sigma.sq.psi.ig) | length(priors$sigma.sq.psi.ig) != 2) {
        stop("sigma.sq.psi.ig must be a list of length 2")
      }
      sigma.sq.psi.a <- priors$sigma.sq.psi.ig[[1]]
      sigma.sq.psi.b <- priors$sigma.sq.psi.ig[[2]]
      if (length(sigma.sq.psi.a) != p.occ.re & length(sigma.sq.psi.a) != 1) {
        if (p.occ.re == 1) {
        stop(paste("sigma.sq.psi.ig[[1]] must be a vector of length ", 
        	   p.occ.re, " with elements corresponding to sigma.sq.psis' shape", sep = ""))
  } else {
        stop(paste("sigma.sq.psi.ig[[1]] must be a vector of length ", 
        	   p.occ.re, " or 1 with elements corresponding to sigma.sq.psis' shape", sep = ""))
        }
      }
      if (length(sigma.sq.psi.b) != p.occ.re & length(sigma.sq.psi.b) != 1) {
        if (p.occ.re == 1) {
          stop(paste("sigma.sq.psi.ig[[2]] must be a vector of length ", 
        	   p.occ.re, " with elements corresponding to sigma.sq.psis' scale", sep = ""))
  } else {
          stop(paste("sigma.sq.psi.ig[[2]] must be a vector of length ", 
        	   p.occ.re, " or 1with elements corresponding to sigma.sq.psis' scale", sep = ""))
        }
      }
if (length(sigma.sq.psi.a) != p.occ.re) {
        sigma.sq.psi.a <- rep(sigma.sq.psi.a, p.occ.re)
      }
if (length(sigma.sq.psi.b) != p.occ.re) {
        sigma.sq.psi.b <- rep(sigma.sq.psi.b, p.occ.re)
      }
  }   else {
      if (verbose) {	    
        message("No prior specified for sigma.sq.psi.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
      }
      sigma.sq.psi.a <- rep(0.1, p.occ.re)
      sigma.sq.psi.b <- rep(0.1, p.occ.re)
    }
  } else {
    sigma.sq.psi.a <- 0
    sigma.sq.psi.b <- 0
  }
  # sigma.sq.p --------------------
  if (p.det.re > 0) {
    if ("sigma.sq.p.ig" %in% names(priors)) {
      if (!is.list(priors$sigma.sq.p.ig) | length(priors$sigma.sq.p.ig) != 2) {
        stop("sigma.sq.p.ig must be a list of length 2")
      }
      sigma.sq.p.a <- priors$sigma.sq.p.ig[[1]]
      sigma.sq.p.b <- priors$sigma.sq.p.ig[[2]]
      if (length(sigma.sq.p.a) != p.det.re & length(sigma.sq.p.a) != 1) {
        if (p.det.re == 1) {
          stop(paste("sigma.sq.p.ig[[1]] must be a vector of length ", 
        	   p.det.re, " with elements corresponding to sigma.sq.ps' shape", sep = ""))
  } else {
          stop(paste("sigma.sq.p.ig[[1]] must be a vector of length ", 
        	   p.det.re, " or 1 with elements corresponding to sigma.sq.ps' shape", sep = ""))
        }
      }
      if (length(sigma.sq.p.b) != p.det.re & length(sigma.sq.p.b) != 1) {
        if (p.det.re == 1) {
          stop(paste("sigma.sq.p.ig[[2]] must be a vector of length ", 
        	     p.det.re, " with elements corresponding to sigma.sq.ps' scale", sep = ""))
  } else {
          stop(paste("sigma.sq.p.ig[[2]] must be a vector of length ", 
        	     p.det.re, " or 1 with elements corresponding to sigma.sq.ps' scale", sep = ""))
        }
      }
if (length(sigma.sq.p.a) != p.det.re) {
        sigma.sq.p.a <- rep(sigma.sq.p.a, p.det.re)
      }
if (length(sigma.sq.p.b) != p.det.re) {
        sigma.sq.p.b <- rep(sigma.sq.p.b, p.det.re)
      }
  }   else {
      if (verbose) {	    
        message("No prior specified for sigma.sq.p.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
      }
      sigma.sq.p.a <- rep(0.1, p.det.re)
      sigma.sq.p.b <- rep(0.1, p.det.re)
    }
  } else {
    sigma.sq.p.a <- 0
    sigma.sq.p.b <- 0
  }

  # Starting values -----------------------------------------------------
  if (missing(inits)) {
    inits <- list()
  }
  names(inits) <- tolower(names(inits))
  # z -------------------------------
  if ("z" %in% names(inits)) {
    z.inits <- inits$z
    if (!is.vector(z.inits)) {
      stop(paste("initial values for z must be a vector of length ",
	   J, sep = ""))
    }
    if (length(z.inits) != J) {
      stop(paste("initial values for z must be a vector of length ",
	   J, sep = ""))
    }
    z.test <- apply(y.big, 1, max, na.rm = TRUE)
    init.test <- sum(z.inits < z.test)
    if (init.test > 0) {
      stop("initial values for latent occurrence (z) are invalid. Please re-specify inits$z so initial values are 1 if the species is observed at that site.")
    }
  } else {
    # In correct order since you reordered y.
    z.inits <- apply(y.big, 1, max, na.rm = TRUE)
    if (verbose) {
      message("z is not specified in initial values.\nSetting initial values based on observed data\n")
    }
    
  }
  # beta -----------------------
  if ("beta" %in% names(inits)) {
    beta.inits <- inits[["beta"]]
    if (length(beta.inits) != p.occ & length(beta.inits) != 1) {
      if (p.occ == 1) {
        stop(paste("initial values for beta must be of length ", p.occ,
	     sep = ""))

      } else {
        stop(paste("initial values for beta must be of length ", p.occ, " or 1",
  	     sep = ""))
      }
    }
    if (length(beta.inits) != p.occ) {
      beta.inits <- rep(beta.inits, p.occ)
    }
  } else {
    beta.inits <- rnorm(p.occ, mu.beta, sqrt(sigma.beta))
    if (verbose) {
      message('beta is not specified in initial values.\nSetting initial values to random values from the prior distribution\n')
    }
  }
  # alpha -----------------------
  if ("alpha" %in% names(inits)) {
    alpha.inits <- inits[["alpha"]]
    if (length(alpha.inits) != p.det & length(alpha.inits) != 1) {
      if (p.det == 1) {
      stop(paste("initial values for alpha must be of length ", p.det,
	   sep = ""))
} else {
        stop(paste("initial values for alpha must be of length ", p.det, " or 1",
	     sep = ""))
      }
    }
    if (length(alpha.inits) != p.det) {
      alpha.inits <- rep(alpha.inits, p.det)
    }
  } else {
    alpha.inits <- rnorm(p.det, mu.alpha, sqrt(sigma.alpha))
    if (verbose) {
      message("alpha is not specified in initial values.\nSetting initial values to random values from the prior distribution\n")
    }
  }

  # sigma.sq.psi -------------------
  if (p.occ.re > 0) {
    if ("sigma.sq.psi" %in% names(inits)) {
      sigma.sq.psi.inits <- inits[["sigma.sq.psi"]]
      if (length(sigma.sq.psi.inits) != p.occ.re & length(sigma.sq.psi.inits) != 1) {
        if (p.occ.re == 1) {
          stop(paste("initial values for sigma.sq.psi must be of length ", p.occ.re, 
	       sep = ""))
  } else {
          stop(paste("initial values for sigma.sq.psi must be of length ", p.occ.re, 
	       " or 1", sep = ""))
        }
      }
if (length(sigma.sq.psi.inits) != p.occ.re) {
        sigma.sq.psi.inits <- rep(sigma.sq.psi.inits, p.occ.re)
      }
    } else {
      sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
      if (verbose) {
        message("sigma.sq.psi is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
      }
    }
    beta.star.indx <- rep(0:(p.occ.re - 1), n.occ.re.long)
    beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
  } else {
    sigma.sq.psi.inits <- 0
    beta.star.indx <- 0
    beta.star.inits <- 0
  }
  # sigma.sq.p ------------------
  if (p.det.re > 0) {
    if ("sigma.sq.p" %in% names(inits)) {
      sigma.sq.p.inits <- inits[["sigma.sq.p"]]
      if (length(sigma.sq.p.inits) != p.det.re & length(sigma.sq.p.inits) != 1) {
        if (p.det.re == 1) {
          stop(paste("initial values for sigma.sq.p must be of length ", p.det.re, 
	     sep = ""))
  } else {
          stop(paste("initial values for sigma.sq.p must be of length ", p.det.re, 
	       " or 1", sep = ""))
          
        }
      }
if (length(sigma.sq.p.inits) != p.det.re) {
        sigma.sq.p.inits <- rep(sigma.sq.p.inits, p.det.re)
      }
    } else {
      sigma.sq.p.inits <- runif(p.det.re, 0.5, 10)
      if (verbose) {
        message("sigma.sq.p is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
      }
    }
    alpha.star.indx <- rep(0:(p.det.re - 1), n.det.re.long)
    alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
  } else {
    sigma.sq.p.inits <- 0
    alpha.star.indx <- 0
    alpha.star.inits <- 0
  }
  # Should initial values be fixed --
  if ("fix" %in% names(inits)) {
    fix.inits <- inits[["fix"]]
    if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
      stop(paste("inits$fix must take value TRUE or FALSE"))
    }
  } else {
    fix.inits <- FALSE
  }
  if (verbose & fix.inits & (n.chains > 1)) {
    message("Fixing initial values across all chains\n")
  }

  curr.chain <- 1
  # Set storage for all variables ---------------------------------------
  storage.mode(y) <- "double"
  storage.mode(z.inits) <- "double"
  storage.mode(X.p) <- "double"
  storage.mode(X) <- "double"
  consts <- c(J, n.obs, p.occ, p.occ.re, n.occ.re, p.det, p.det.re, n.det.re)
  storage.mode(consts) <- "integer"
  storage.mode(K) <- "double"
  storage.mode(beta.inits) <- "double"
  storage.mode(alpha.inits) <- "double"
  storage.mode(z.long.indx) <- "integer"
  storage.mode(mu.beta) <- "double"
  storage.mode(Sigma.beta) <- "double"
  storage.mode(mu.alpha) <- "double"
  storage.mode(Sigma.alpha) <- "double"
  storage.mode(n.samples) <- "integer"
  storage.mode(n.omp.threads) <- "integer"
  storage.mode(verbose) <- "integer"
  storage.mode(n.report) <- "integer"
  chain.info <- c(curr.chain, n.chains)
  storage.mode(chain.info) <- "integer"
  n.post.samples <- length(seq(from = n.burn + 1, 
			 to = n.samples, 
			 by = as.integer(n.thin)))
  storage.mode(n.post.samples) <- "integer"
  samples.info <- c(n.burn, n.thin, n.post.samples)
  storage.mode(samples.info) <- "integer"
  # For detection random effects
  storage.mode(X.p.re) <- "integer"
  alpha.level.indx <- sort(unique(c(X.p.re)))
  storage.mode(alpha.level.indx) <- "integer"
  storage.mode(n.det.re.long) <- "integer"
  storage.mode(sigma.sq.p.inits) <- "double"
  storage.mode(sigma.sq.p.a) <- "double"
  storage.mode(sigma.sq.p.b) <- "double"
  storage.mode(alpha.star.inits) <- "double"
  storage.mode(alpha.star.indx) <- "integer"
  # For occurrence random effects
  storage.mode(X.re) <- "integer"
  beta.level.indx <- sort(unique(c(X.re)))
  storage.mode(beta.level.indx) <- "integer"
  storage.mode(sigma.sq.psi.inits) <- "double"
  storage.mode(sigma.sq.psi.a) <- "double"
  storage.mode(sigma.sq.psi.b) <- "double"
  storage.mode(beta.star.inits) <- "double"
  storage.mode(beta.star.indx) <- "integer"

  # Fit the model -------------------------------------------------------
  out.tmp <- list()
  out <- list()
  if (!k.fold.only) {
    for (i in 1:n.chains) {
      # Change initial values if i > 1
      if ((i > 1) & (!fix.inits)) {
        beta.inits <- rnorm(p.occ, mu.beta, sqrt(sigma.beta))
        alpha.inits <- rnorm(p.det, mu.alpha, sqrt(sigma.alpha))
        if (p.occ.re > 0) {
          sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
          beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
        }
        if (p.det.re > 0) {
          sigma.sq.p.inits <- runif(p.det.re, 0.5, 10)
          alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
        }
      }
      storage.mode(chain.info) <- "integer"
      # Run the model in C
      out.tmp[[i]] <- .Call("PGOcc", y, X, X.p, X.re, X.p.re, consts, 
        		    K, n.occ.re.long, n.det.re.long, beta.inits, alpha.inits, 
        		    sigma.sq.psi.inits, sigma.sq.p.inits, beta.star.inits, 
        		    alpha.star.inits, z.inits, z.long.indx, beta.star.indx, 
        		    beta.level.indx, alpha.star.indx, alpha.level.indx, mu.beta, 
        		    mu.alpha, Sigma.beta, Sigma.alpha, sigma.sq.psi.a, sigma.sq.psi.b, 
        		    sigma.sq.p.a, sigma.sq.p.b, n.samples, n.omp.threads, verbose, 
        		    n.report, samples.info, chain.info)
      chain.info[1] <- chain.info[1] + 1
    } # i   
    # Calculate R-Hat ---------------
    out <- list()
    out$rhat <- list()
    if (n.chains > 1) {
      # as.vector removes the "Upper CI" when there is only 1 variable. 
      out$rhat$beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a) 
      					      mcmc(t(a$beta.samples)))), 
      			     autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
      out$rhat$alpha <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a) 
      					      mcmc(t(a$alpha.samples)))), 
      			      autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
      if (p.det.re > 0) {
      out$rhat$sigma.sq.p <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a) 
      					      mcmc(t(a$sigma.sq.p.samples)))), 
      			     autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
      }
      if (p.occ.re > 0) {
      out$rhat$sigma.sq.psi <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a) 
      					      mcmc(t(a$sigma.sq.psi.samples)))), 
      			     autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
      }
    } else {
      out$rhat$beta <- rep(NA, p.occ)
      out$rhat$alpha <- rep(NA, p.det)
      if (p.det.re > 0) {
        out$rhat$sigma.sq.p <- rep(NA, p.det.re)
      }
      if (p.occ.re > 0) {
        out$rhat$sigma.sq.psi <- rep(NA, p.occ.re)
      }
    }
    # Put everything into MCMC objects
    out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
    colnames(out$beta.samples) <- x.names
    out$alpha.samples <- mcmc(do.call(rbind, 
      				lapply(out.tmp, function(a) t(a$alpha.samples))))
    colnames(out$alpha.samples) <- x.p.names
    out$z.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$z.samples))))
    out$psi.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$psi.samples))))
    out$like.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$like.samples))))
    if (p.occ.re > 0) {
      out$sigma.sq.psi.samples <- mcmc(
        do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.psi.samples))))
      colnames(out$sigma.sq.psi.samples) <- x.re.names
      out$beta.star.samples <- mcmc(
        do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
      tmp.names <- unlist(re.level.names)
      beta.star.names <- paste(rep(x.re.names, n.occ.re.long), tmp.names, sep = '-')
      colnames(out$beta.star.samples) <- beta.star.names
      out$re.level.names <- re.level.names
    }
    if (p.det.re > 0) {
      out$sigma.sq.p.samples <- mcmc(
        do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.p.samples))))
      colnames(out$sigma.sq.p.samples) <- x.p.re.names
      out$alpha.star.samples <- mcmc(
        do.call(rbind, lapply(out.tmp, function(a) t(a$alpha.star.samples))))
      tmp.names <- unlist(p.re.level.names)
      alpha.star.names <- paste(rep(x.p.re.names, n.det.re.long), tmp.names, sep = '-')
      colnames(out$alpha.star.samples) <- alpha.star.names
      out$p.re.level.names <- p.re.level.names
    }
    # Calculate effective sample sizes
    out$ESS <- list()
    out$ESS$beta <- effectiveSize(out$beta.samples)
    out$ESS$alpha <- effectiveSize(out$alpha.samples)
    if (p.det.re > 0) {
      out$ESS$sigma.sq.p <- effectiveSize(out$sigma.sq.p.samples)
    }
    if (p.occ.re > 0) {
      out$ESS$sigma.sq.psi <- effectiveSize(out$sigma.sq.psi.samples)
    }
    out$X <- X
    out$X.p <- X.p
    out$X.re <- X.re
    out$X.p.re <- X.p.re
    out$y <- y.big
    out$n.samples <- n.samples
    out$call <- cl
    out$n.post <- n.post.samples
    out$n.thin <- n.thin
    out$n.burn <- n.burn
    out$n.chains <- n.chains
    if (p.det.re > 0) {
      out$pRE <- TRUE
    } else {
      out$pRE <- FALSE
    }
    if (p.occ.re > 0) {
      out$psiRE <- TRUE
    } else {
      out$psiRE <- FALSE
    }
  }
  # K-fold cross-validation -------
  if (!missing(k.fold)) {
    if (verbose) {
      cat("----------------------------------------\n");
      cat("\tCross-validation\n");
      cat("----------------------------------------\n");
      message(paste("Performing ", k.fold, "-fold cross-validation using ", k.fold.threads,
      	        " thread(s).", sep = ''))
    }
    set.seed(k.fold.seed)
    # Number of sites in each hold out data set. 
    sites.random <- sample(1:J)    
    sites.k.fold <- split(sites.random, sites.random %% k.fold)
    registerDoParallel(k.fold.threads)
    model.deviance <- foreach (i = 1:k.fold, .combine = sum) %dopar% {
      curr.set <- sort(sites.random[sites.k.fold[[i]]])
      if (binom) {
        y.indx <- !(1:J %in% curr.set)
      } else {
      y.indx <- !((z.long.indx + 1) %in% curr.set)
      }
      y.fit <- y[y.indx]
      y.0 <- y[!y.indx]
      y.big.fit <- y.big[-curr.set, , drop = FALSE]
      y.big.0 <- y.big[curr.set, , drop = FALSE]
      z.inits.fit <- z.inits[-curr.set]
      X.p.fit <- X.p[y.indx, , drop = FALSE]
      X.p.0 <- X.p[!y.indx, , drop = FALSE]
      X.fit <- X[-curr.set, , drop = FALSE]
      X.0 <- X[curr.set, , drop = FALSE]
      J.fit <- nrow(X.fit)
      J.0 <- nrow(X.0)
      K.fit <- K[-curr.set]
      K.0 <- K[curr.set]
      rep.indx.fit <- rep.indx[-curr.set]
      rep.indx.0 <- rep.indx[curr.set]
      n.obs.fit <- nrow(X.p.fit)
      n.obs.0 <- nrow(X.p.0)
      X.p.re.fit <- X.p.re[y.indx, , drop = FALSE]
      X.p.re.0 <- X.p.re[!y.indx, , drop = FALSE]
      n.det.re.fit <- length(unique(c(X.p.re.fit)))
      n.det.re.long.fit <- apply(X.p.re.fit, 2, function(a) length(unique(a)))
      if (p.det.re > 0) {	
        alpha.star.indx.fit <- rep(0:(p.det.re - 1), n.det.re.long.fit)
        alpha.level.indx.fit <- sort(unique(c(X.p.re.fit)))
        alpha.star.inits.fit <- rnorm(n.det.re.fit, 0,
        			      sqrt(sigma.sq.p.inits[alpha.star.indx.fit + 1]))
        p.re.level.names.fit <- list()
        for (t in 1:p.det.re) {
          tmp.indx <- alpha.level.indx.fit[alpha.star.indx.fit == t - 1]
          p.re.level.names.fit[[t]] <- unlist(p.re.level.names)[tmp.indx + 1]    
        }
      } else {
        alpha.star.indx.fit <- alpha.star.indx
        alpha.level.indx.fit <- alpha.level.indx
        alpha.star.inits.fit <- alpha.star.inits
      }
      # Random Occurrence Effects
      X.re.fit <- X.re[-curr.set, , drop = FALSE]
      X.re.0 <- X.re[curr.set, , drop = FALSE]
      n.occ.re.fit <- length(unique(c(X.re.fit)))
      n.occ.re.long.fit <- apply(X.re.fit, 2, function(a) length(unique(a)))
      if (p.occ.re > 0) {	
        beta.star.indx.fit <- rep(0:(p.occ.re - 1), n.occ.re.long.fit)
        beta.level.indx.fit <- sort(unique(c(X.re.fit)))
        beta.star.inits.fit <- rnorm(n.occ.re.fit, 0,
        			      sqrt(sigma.sq.psi.inits[beta.star.indx.fit + 1]))
        re.level.names.fit <- list()
        for (t in 1:p.occ.re) {
          tmp.indx <- beta.level.indx.fit[beta.star.indx.fit == t - 1]
          re.level.names.fit[[t]] <- unlist(re.level.names)[tmp.indx + 1]    
        }
      } else {
        beta.star.indx.fit <- beta.star.indx
        beta.level.indx.fit <- beta.level.indx
        beta.star.inits.fit <- beta.star.inits
        re.level.names.fit <- re.level.names
      }
      if (!binom) {
        z.long.indx.fit <- rep(1:J.fit, dim(y.big.fit)[2])
        z.long.indx.fit <- z.long.indx.fit[!is.na(c(y.big.fit))]
        # Subtract 1 for indices in C
        z.long.indx.fit <- z.long.indx.fit - 1
        z.0.long.indx <- rep(1:J.0, dim(y.big.0)[2])
        z.0.long.indx <- z.0.long.indx[!is.na(c(y.big.0))]
        # Don't subtract 1 for z.0.long.indx since its used in R only 
      } else {
        z.long.indx.fit <- 0:(J.fit - 1)
        z.0.long.indx <- 1:J.0
      }

      verbose.fit <- FALSE
      n.omp.threads.fit <- 1
      storage.mode(y.fit) <- "double"
      storage.mode(z.inits.fit) <- "double"
      storage.mode(X.p.fit) <- "double"
      storage.mode(X.fit) <- "double"
      storage.mode(K.fit) <- "double"
      consts.fit <- c(J.fit, n.obs.fit, p.occ, p.occ.re, n.occ.re.fit, 
                      p.det, p.det.re, n.det.re.fit)
      storage.mode(consts.fit) <- "integer"
      storage.mode(z.long.indx.fit) <- "integer"
      storage.mode(n.samples) <- "integer"
      storage.mode(n.omp.threads.fit) <- "integer"
      storage.mode(verbose.fit) <- "integer"
      storage.mode(n.report) <- "integer"
      storage.mode(X.p.re.fit) <- "integer"
      storage.mode(n.det.re.long.fit) <- "integer"
      storage.mode(alpha.star.inits.fit) <- "double"
      storage.mode(alpha.star.indx.fit) <- "integer"
      storage.mode(alpha.level.indx.fit) <- "integer"
      storage.mode(X.re.fit) <- "integer"
      storage.mode(n.occ.re.long.fit) <- "integer"
      storage.mode(beta.star.inits.fit) <- "double"
      storage.mode(beta.star.indx.fit) <- "integer"
      storage.mode(beta.level.indx.fit) <- "integer"
      chain.info[1] <- 1
      storage.mode(chain.info) <- "integer"
      # Run the model in C
      out.fit <- .Call("PGOcc", y.fit, X.fit, X.p.fit, X.re.fit, X.p.re.fit, consts.fit, 
		  K.fit, n.occ.re.long.fit, n.det.re.long.fit, beta.inits, alpha.inits, 
		  sigma.sq.psi.inits, sigma.sq.p.inits, beta.star.inits.fit, 
		  alpha.star.inits.fit, z.inits.fit, z.long.indx.fit, beta.star.indx.fit, 
		  beta.level.indx.fit, alpha.star.indx.fit, alpha.level.indx.fit, mu.beta, 
		  mu.alpha, Sigma.beta, Sigma.alpha, sigma.sq.psi.a, sigma.sq.psi.b, 
		  sigma.sq.p.a, sigma.sq.p.b, n.samples, n.omp.threads.fit, verbose.fit, 
		  n.report, samples.info, chain.info)
      out.fit$beta.samples <- mcmc(t(out.fit$beta.samples))
      colnames(out.fit$beta.samples) <- x.names
      out.fit$alpha.samples <- mcmc(t(out.fit$alpha.samples))
      colnames(out.fit$alpha.samples) <- x.p.names
      out.fit$X <- X.fit
      out.fit$y <- y.big.fit
      out.fit$X.p <- X.p.fit
      out.fit$call <- cl
      out.fit$n.samples <- n.samples
      out.fit$n.post <- n.post.samples
      out.fit$n.thin <- n.thin
      out.fit$n.burn <- n.burn
      out.fit$n.chains <- 1
      if (p.det.re > 0) {
        out.fit$pRE <- TRUE
      } else {
        out.fit$pRE <- FALSE
      }
      if (p.occ.re > 0) {
        out.fit$sigma.sq.psi.samples <- mcmc(t(out.fit$sigma.sq.psi.samples))
        colnames(out.fit$sigma.sq.psi.samples) <- x.re.names
        out.fit$beta.star.samples <- mcmc(t(out.fit$beta.star.samples))
        tmp.names <- unlist(re.level.names.fit)
        beta.star.names <- paste(rep(x.re.names, n.occ.re.long.fit), tmp.names, sep = '-')
        colnames(out.fit$beta.star.samples) <- beta.star.names
        out.fit$re.level.names <- re.level.names.fit
        out.fit$X.re <- X.re.fit
      }
      if (p.det.re > 0) {
        out.fit$sigma.sq.p.samples <- mcmc(t(out.fit$sigma.sq.p.samples))
        colnames(out.fit$sigma.sq.p.samples) <- x.p.re.names
        out.fit$alpha.star.samples <- mcmc(t(out.fit$alpha.star.samples))
        tmp.names <- unlist(p.re.level.names.fit)
        alpha.star.names <- paste(rep(x.p.re.names, n.det.re.long.fit), tmp.names, sep = '-')
        colnames(out.fit$alpha.star.samples) <- alpha.star.names
        out.fit$p.re.level.names <- p.re.level.names.fit
        out.fit$X.p.re <- X.p.re.fit
      }
      if (p.occ.re > 0) {
        out.fit$psiRE <- TRUE
      } else {
        out.fit$psiRE <- FALSE	
      }
      class(out.fit) <- "PGOcc"

      # Get RE levels correct for when they aren't supplied at values starting at 1.
      if (p.occ.re > 0) {
        tmp <- unlist(re.level.names)
        X.re.0 <- matrix(tmp[c(X.re.0 + 1)], nrow(X.re.0), ncol(X.re.0))
        colnames(X.re.0) <- x.re.names
      }

      # Predict occurrence at new sites
      if (p.occ.re > 0) {X.0 <- cbind(X.0, X.re.0)}
      out.pred <- predict.PGOcc(out.fit, X.0)

      # Detection 
      # Generate detection values
      # Get RE levels correct for when they aren't supplied at values starting at 1.
      if (p.det.re > 0) {
        tmp <- unlist(p.re.level.names)
        X.p.re.0 <- matrix(tmp[c(X.p.re.0 + 1)], nrow(X.p.re.0), ncol(X.p.re.0))
        colnames(X.p.re.0) <- x.p.re.names
      }
      if (p.det.re > 0) {X.p.0 <- cbind(X.p.0, X.p.re.0)}
      out.p.pred <- predict.PGOcc(out.fit, X.p.0, type = 'detection')
      if (binom) {
        like.samples <- matrix(NA, nrow(y.big.0), ncol(y.big.0))
        for (j in 1:nrow(X.p.0)) {
          for (k in rep.indx.0[[j]]) {
            like.samples[j, k] <- mean(dbinom(y.big.0[j, k], 1,
              out.p.pred$p.0.samples[, j] * out.pred$z.0.samples[, z.0.long.indx[j]]))
          }
        }
      } else {
        like.samples <- rep(NA, nrow(X.p.0))
        for (j in 1:nrow(X.p.0)) {
          like.samples[j] <- mean(dbinom(y.0[j], 1, 
          out.p.pred$p.0.samples[, j] * out.pred$z.0.samples[, z.0.long.indx[j]]))
        }
      }
      sum(log(like.samples), na.rm = TRUE)
    }
    model.deviance <- -2 * model.deviance
    # Return objects from cross-validation
    out$k.fold.deviance <- model.deviance
    stopImplicitCluster()
  }
  class(out) <- "PGOcc"
  out$run.time <- proc.time() - ptm
  out
}

Try the spOccupancy package in your browser

Any scripts or data that you put into this service are public.

spOccupancy documentation built on April 3, 2025, 10:03 p.m.