Nothing
intPGOcc <- function(occ.formula, det.formula, data, inits, priors,
n.samples, n.omp.threads = 1, verbose = TRUE,
n.report = 1000, n.burn = round(.10 * n.samples),
n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed = 100,
k.fold.data, k.fold.only = FALSE, ...){
ptm <- proc.time()
logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
# Make it look nice
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing to run the model\n");
cat("----------------------------------------\n");
}
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Call ----------------------------------------------------------------
# Returns a call in which all of the specified arguments are
# specified by their full names.
cl <- match.call()
# Some initial checks -------------------------------------------------
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
if (!'y' %in% names(data)) {
stop("error: detection-nondetection data y must be specified in data")
}
if (!is.list(data$y)) {
stop("error: y must be a list of detection-nondetection data sets")
}
y <- data$y
n.data <- length(y)
# Check if individual data sets are provided as vectors for nonreplicated data,
# then convert all to matrices to allow for data frames.
for (q in 1:n.data) {
if (is.null(dim(y[[q]]))) {
message(paste("Data source ", q, " is provided as a one-dimensional vector.\nAssuming this is a nonreplicated detection-nondetection data source.\n", sep = ''))
}
y[[q]] <- as.matrix(y[[q]])
}
if (!'sites' %in% names(data)) {
stop("error: site ids must be specified in data")
}
sites <- data$sites
# Number of sites with at least one data source
J <- length(unique(unlist(sites)))
# Number of sites for each data set
J.long <- sapply(y, function(a) dim(a)[[1]])
if (!'occ.covs' %in% names(data)) {
if (occ.formula == ~ 1) {
if (verbose) {
message("occupancy covariates (occ.covs) not specified in data.\nAssuming intercept only occupancy model.\n")
}
data$occ.covs <- matrix(1, J, 1)
} else {
stop("error: occ.covs must be specified in data for an occupancy model with covariates")
}
}
if (!'det.covs' %in% names(data)) {
data$det.covs <- list()
for (i in 1:n.data) {
if (verbose) {
message("detection covariates (det.covs) not specified in data.\nAssuming interept only detection model for each data source.\n")
}
det.formula.curr <- det.formula[[i]]
if (det.formula.curr == ~ 1) {
for (i in 1:n.data) {
data$det.covs[[i]] <- list(int = matrix(1, dim(y[[i]])[1], dim(y[[i]])[2]))
}
} else {
stop("error: det.covs must be specified in data for a detection model with covariates")
}
}
}
if (!missing(k.fold)) {
if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
stop("error: k.fold must be a single integer value >= 2")
}
}
# Check if all detection covariates are at site level for a given
# data set.
binom <- rep(FALSE, n.data)
# Make all covariates a data frame. Unlist is necessary for when factors
# are supplied.
for (i in 1:n.data) {
# Get in required R model format.
data$det.covs[[i]] <- data.frame(lapply(data$det.covs[[i]], function(a) unlist(c(a))))
# Replicate det.covs if only covariates are at the site level.
if (nrow(data$det.covs[[i]]) == nrow(y[[i]])) {
binom[i] <- TRUE
# Check if there are missing site-level covariates
if (sum(is.na(data$det.covs[[i]])) != 0) {
stop("error: missing values in site-level det.covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
data$det.covs[[i]] <- data.frame(sapply(data$det.covs[[i]], rep,
times = dim(y[[i]])[2]))
}
}
data$occ.covs <- as.data.frame(data$occ.covs)
# Check whether random effects are sent in as numeric, and
# return error if they are.
# Occurrence ----------------------
if (!is.null(findbars(occ.formula))) {
occ.re.names <- sapply(findbars(occ.formula), all.vars)
for (i in 1:length(occ.re.names)) {
if (is(data$occ.covs[, occ.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", occ.re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$occ.covs[, occ.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", occ.re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Detection -----------------------
for (q in 1:n.data) {
if (!is.null(findbars(det.formula[[q]]))) {
det.re.names <- sapply(findbars(det.formula[[q]]), all.vars)
for (i in 1:length(det.re.names)) {
if (is(data$det.covs[[q]][, det.re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", det.re.names[i], " in data source ", q, " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$det.covs[[q]][, det.re.names[i]], 'character')) {
stop(paste("error: random effect variable ", det.re.names[i], "in data source ", q, " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
}
# Checking missing values ---------------------------------------------
# y -------------------------------
for (q in 1:n.data) {
y.na.test <- apply(y[[q]], 1, function(a) sum(!is.na(a)))
if (sum(y.na.test == 0) > 0) {
stop(paste("error: some sites in data source ", q, " in y have all missing detection histories.\n Remove these sites from y and all objects in the 'data' argument if the site is not surveyed by another data source\n, then use 'predict' to obtain predictions at these locations if desired.", sep = ''))
}
}
# occ.covs ------------------------
if (sum(is.na(data$occ.covs)) != 0) {
stop("error: missing values in occ.covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
# det.covs ------------------------
for (q in 1:n.data) {
if (!binom[q]) {
for (i in 1:ncol(data$det.covs[[q]])) {
if (sum(is.na(data$det.covs[[q]][, i])) > sum(is.na(y[[q]]))) {
stop("error: some elements in det.covs have missing values where there is an observed data value in y. Please either replace the NA values in det.covs with non-missing values (e.g., mean imputation) or set the corresponding values in y to NA where the covariate is missing.")
}
}
# Misalignment between y and det.covs
y.missing <- which(is.na(y[[q]]))
det.covs.missing <- lapply(data$det.covs[[q]], function(a) which(is.na(a)))
for (i in 1:length(det.covs.missing)) {
tmp.indx <- !(y.missing %in% det.covs.missing[[i]])
if (sum(tmp.indx) > 0) {
if (i == 1 & verbose) {
message("There are missing values in data$y with corresponding non-missing values in data$det.covs.\nRemoving these site/replicate combinations for fitting the model.")
}
data$det.covs[[q]][y.missing, i] <- NA
}
}
}
}
if (missing(n.samples)) {
stop("error: must specify number of MCMC samples")
}
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
# Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
}
if (!missing(k.fold)) {
if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
stop("error: k.fold must be a single integer value >= 2")
}
}
# Formula -------------------------------------------------------------
# Occupancy -----------------------
if (missing(occ.formula)) {
stop("error: occ.formula must be specified")
}
if (is(occ.formula, 'formula')) {
tmp <- parseFormula(occ.formula, data$occ.covs)
X <- as.matrix(tmp[[1]])
X.re <- as.matrix(tmp[[4]])
x.re.names <- colnames(X.re)
x.names <- tmp[[2]]
} else {
stop("error: occ.formula is misspecified")
}
# Get RE level names
re.level.names <- lapply(data$occ.covs[, x.re.names, drop = FALSE],
function (a) sort(unique(a)))
# Detection -----------------------
if (missing(det.formula)) {
stop("error: det.formula must be specified")
}
if (!is.list(det.formula)) {
stop(paste("error: det.formula must be a list of ", n.data, " formulas", sep = ''))
}
X.p <- list()
X.p.re <- list()
x.p.names <- list()
x.p.re.names <- list()
p.re.level.names <- list()
for (i in 1:n.data) {
if (is(det.formula[[i]], 'formula')) {
tmp <- parseFormula(det.formula[[i]], data$det.covs[[i]])
X.p[[i]] <- as.matrix(tmp[[1]])
x.p.names[[i]] <- tmp[[2]]
if (ncol(tmp[[4]]) > 0) {
X.p.re[[i]] <- as.matrix(tmp[[4]])
x.p.re.names[[i]] <- colnames(X.p.re[[i]])
p.re.level.names[[i]] <- lapply(data$det.covs[[i]][, x.p.re.names[[i]], drop = FALSE],
function (a) sort(unique(a)))
} else {
X.p.re[[i]] <- matrix(NA, 0, 0)
x.p.re.names[[i]] <- NULL
p.re.level.names[[i]] <- NULL
}
} else {
stop(paste("error: det.formula for data source ", i, " is misspecified", sep = ''))
}
}
x.p.names <- unlist(x.p.names)
x.p.re.names <- unlist(x.p.re.names)
# Get basic info from inputs ------------------------------------------
# Total number of sites
J.all <- nrow(X)
if (length(X.p) != n.data | length(y) != n.data) {
stop(paste("error: y and X.p must be lists of length ", n.data, ".", sep = ''))
}
# Number of occupancy parameters
p.occ <- ncol(X)
# Number of occupancy random effect parameters
p.occ.re <- ncol(X.re)
# Number of detection random effect parameters for each data set
p.det.re.by.data <- sapply(X.p.re, ncol)
# Total number of detection random effects
p.det.re <- sum(p.det.re.by.data)
# Number of detection parameters for each data set
p.det.long <- sapply(X.p, function(a) dim(a)[[2]])
# Total number of detection parameters
p.det <- sum(p.det.long)
n.rep <- lapply(y, function(a1) apply(a1, 1, function(a2) sum(!is.na(a2))))
# Number of latent occupancy random effect values
n.occ.re <- length(unlist(apply(X.re, 2, unique)))
n.occ.re.long <- apply(X.re, 2, function(a) length(unique(a)))
# Number of levels for each detection random effect
n.det.re.long <- unlist(sapply(X.p.re, function(a) apply(a, 2, function(b) length(unique(b)))))
# Number of latent detection random effects for each data set
n.det.re.by.data <- sapply(sapply(X.p.re, function(a) apply(a, 2, function(b) length(unique(b)))), sum)
# Total number of detection random effect levels
n.det.re <- sum(n.det.re.by.data)
# Max number of repeat visits for each data set
K.long.max <- sapply(y, function(a) dim(a)[2])
# Number of repeat visits for each data set site.
K <- unlist(n.rep)
# Get indics to map z to y --------------------------------------------
X.p.orig <- X.p
y.big <- y
names.long <- list()
names.re.long <- list()
# Remove missing observations when the covariate data are available but
# there are missing detection-nondetection data
for (i in 1:n.data) {
if (nrow(X.p[[i]]) == length(y[[i]])) {
X.p[[i]] <- X.p[[i]][!is.na(y[[i]]), , drop = FALSE]
}
if (nrow(X.p.re[[i]]) == length(y[[i]]) & p.det.re.by.data[i] > 0) {
X.p.re[[i]] <- X.p.re[[i]][!is.na(y[[i]]), , drop = FALSE]
}
# Need these for later on
names.long[[i]] <- which(!is.na(y[[i]]))
}
n.obs.long <- sapply(X.p, nrow)
n.obs <- sum(n.obs.long)
z.long.indx.r <- list()
for (i in 1:n.data) {
z.long.indx.r[[i]] <- rep(sites[[i]], K.long.max[i])
z.long.indx.r[[i]] <- z.long.indx.r[[i]][!is.na(c(y[[i]]))]
}
z.long.indx.r <- unlist(z.long.indx.r)
# Subtract 1 for c indices
z.long.indx.c <- z.long.indx.r - 1
# Get indices for WAIC calculation directly in C.
J.sum <- sum(J.long)
waic.J.indx <- unlist(sites) - 1
waic.n.obs.indx <- list()
tmp.start <- 0
for (i in 1:n.data) {
tmp.vals <- rep(1:J.long[i], K.long.max[i])
tmp.vals <- tmp.vals[!is.na(c(y[[i]]))]
waic.n.obs.indx[[i]] <- tmp.vals + tmp.start
tmp.start <- tmp.start + J.long[i]
}
waic.n.obs.indx <- unlist(waic.n.obs.indx) - 1
y <- unlist(y)
y <- y[!is.na(y)]
# Index indicating the data set associated with each data point in y
data.indx.r <- rep(NA, n.obs)
indx <- 1
for (i in 1:n.data) {
data.indx.r[indx:(indx + n.obs.long[i] - 1)] <- rep(i, n.obs.long[i])
indx <- indx + n.obs.long[i]
}
data.indx.c <- data.indx.r - 1
X.p.all <- matrix(NA, n.obs, max(p.det.long))
indx <- 1
for (i in 1:n.data) {
X.p.all[indx:(indx + nrow(X.p[[i]]) - 1), 1:p.det.long[i]] <- X.p[[i]]
indx <- indx + nrow(X.p[[i]])
}
# Get random effect matrices all set ----------------------------------
# Make sure each level of each random effect has a different index value
# for use when fitting the model.
# Occurrence REs ------------------
if (p.occ.re > 1) {
for (j in 2:p.occ.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
}
}
# Detection REs -------------------
# Need to give a different value for each level across different random
# effects within a given data set and across a given data set.
# Total number of detection random effect observations.
n.obs.re <- sum(sapply(X.p.re, nrow))
curr.max <- 0
for (i in 1:n.data) {
if (p.det.re.by.data[i] > 0) {
for (j in 1:p.det.re.by.data[i]) {
X.p.re[[i]][, j] <- X.p.re[[i]][, j] + curr.max
curr.max <- max(X.p.re[[i]]) + 1
}
}
}
# Combine all detection REs into one group.
X.p.re.all <- matrix(NA, n.obs, max(p.det.re.by.data))
indx <- 1
for (i in 1:n.data) {
if (p.det.re.by.data[i] > 0) {
X.p.re.all[indx:(indx + nrow(X.p.re[[i]]) - 1), 1:p.det.re.by.data[i]] <- X.p.re[[i]]
}
indx <- indx + nrow(X.p[[i]])
}
# Number of random effects for each row of X.p.re.all
alpha.n.re.indx <- apply(X.p.re.all, 1, function(a) sum(!is.na(a)))
# Priors --------------------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# beta -----------------------
if ("beta.normal" %in% names(priors)) {
if (!is.list(priors$beta.normal) | length(priors$beta.normal) != 2) {
stop("error: beta.normal must be a list of length 2")
}
mu.beta <- priors$beta.normal[[1]]
sigma.beta <- priors$beta.normal[[2]]
if (length(mu.beta) != p.occ & length(mu.beta) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.occ, " with elements corresponding to betas' mean", sep = ""))
} else {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to betas' mean", sep = ""))
}
}
if (length(sigma.beta) != p.occ & length(sigma.beta) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.occ, " with elements corresponding to betas' variance", sep = ""))
} else {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to betas' variance", sep = ""))
}
}
if (length(sigma.beta) != p.occ) {
sigma.beta <- rep(sigma.beta, p.occ)
}
if (length(mu.beta) != p.occ) {
mu.beta <- rep(mu.beta, p.occ)
}
Sigma.beta <- sigma.beta * diag(p.occ)
} else {
if (verbose) {
message("No prior specified for beta.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.beta <- rep(0, p.occ)
sigma.beta <- rep(2.72, p.occ)
Sigma.beta <- diag(p.occ) * 2.72
}
# alpha -----------------------
if ("alpha.normal" %in% names(priors)) {
if (!is.list(priors$alpha.normal) | length(priors$alpha.normal) != 2) {
stop("error: alpha.normal must be a list of length 2")
}
mu.alpha <- priors$alpha.normal[[1]]
sigma.alpha <- priors$alpha.normal[[2]]
if (length(mu.alpha) != n.data | !is.list(mu.alpha)) {
stop(paste("error: alpha.normal[[1]] must be a list of length ",
n.data, " with elements corresponding to alphas' mean for each data set", sep = ""))
}
for (q in 1:n.data) {
if (length(mu.alpha[[q]]) != p.det.long[q] & length(mu.alpha[[q]]) != 1) {
if (p.det.long[q] == 1) {
stop(paste("error: prior means for alpha.normal[[1]][[", q, "]] must be a vector of length ",
p.det.long[q], sep = ""))
} else {
stop(paste("error: prior means for alpha.normal[[1]][[", q, "]] must be a vector of length ",
p.det.long[q], "or 1", sep = ""))
}
}
if (length(mu.alpha[[q]]) != p.det.long[q]) {
mu.alpha[[q]] <- rep(mu.alpha[[q]], p.det.long[q])
}
}
mu.alpha <- unlist(mu.alpha)
if (length(sigma.alpha) != n.data | !is.list(sigma.alpha)) {
stop(paste("error: alpha.normal[[2]] must be a list of length ",
n.data, " with elements corresponding to alphas' variance for each data set", sep = ""))
}
for (q in 1:n.data) {
if (length(sigma.alpha[[q]]) != p.det.long[q] & length(sigma.alpha[[q]]) != 1) {
if (p.det.long[q] == 1) {
stop(paste("error: prior variances for alpha.normal[[2]][[", q, "]] must be a vector of length ",
p.det.long[q], sep = ""))
} else {
stop(paste("error: prior variances for alpha.normal[[2]][[", q, "]] must be a vector of length ",
p.det.long[q], " or 1", sep = ""))
}
}
if (length(sigma.alpha[[q]]) != p.det.long[q]) {
sigma.alpha[[q]] <- rep(sigma.alpha[[q]], p.det.long[q])
}
}
sigma.alpha <- unlist(sigma.alpha)
} else {
if (verbose) {
message("No prior specified for alpha.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.alpha <- rep(0, p.det)
sigma.alpha <- rep(2.72, p.det)
}
# sigma.sq.psi --------------------
if (p.occ.re > 0) {
if ("sigma.sq.psi.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.psi.ig) | length(priors$sigma.sq.psi.ig) != 2) {
stop("error: sigma.sq.psi.ig must be a list of length 2")
}
sigma.sq.psi.a <- priors$sigma.sq.psi.ig[[1]]
sigma.sq.psi.b <- priors$sigma.sq.psi.ig[[2]]
if (length(sigma.sq.psi.a) != p.occ.re & length(sigma.sq.psi.a) != 1) {
if (p.occ.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.occ.re, " with elements corresponding to sigma.sq.psis' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.occ.re, " or 1 with elements corresponding to sigma.sq.psis' shape", sep = ""))
}
}
if (length(sigma.sq.psi.b) != p.occ.re & length(sigma.sq.psi.b) != 1) {
if (p.occ.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.occ.re, " with elements corresponding to sigma.sq.psis' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.occ.re, " or 1with elements corresponding to sigma.sq.psis' scale", sep = ""))
}
}
if (length(sigma.sq.psi.a) != p.occ.re) {
sigma.sq.psi.a <- rep(sigma.sq.psi.a, p.occ.re)
}
if (length(sigma.sq.psi.b) != p.occ.re) {
sigma.sq.psi.b <- rep(sigma.sq.psi.b, p.occ.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.psi.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.psi.a <- rep(0.1, p.occ.re)
sigma.sq.psi.b <- rep(0.1, p.occ.re)
}
} else {
sigma.sq.psi.a <- 0
sigma.sq.psi.b <- 0
}
# sigma.sq.p --------------------
if (p.det.re > 0) {
if ("sigma.sq.p.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.p.ig) | length(priors$sigma.sq.p.ig) != 2) {
stop("error: sigma.sq.p.ig must be a list of length 2")
}
sigma.sq.p.a <- priors$sigma.sq.p.ig[[1]]
sigma.sq.p.b <- priors$sigma.sq.p.ig[[2]]
if (length(sigma.sq.p.a) != p.det.re & length(sigma.sq.p.a) != 1) {
if (p.det.re == 1) {
stop(paste("error: sigma.sq.p.ig[[1]] must be a vector of length ",
p.det.re, " with elements corresponding to sigma.sq.ps' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.p.ig[[1]] must be a vector of length ",
p.det.re, " or 1 with elements corresponding to sigma.sq.ps' shape", sep = ""))
}
}
if (length(sigma.sq.p.b) != p.det.re & length(sigma.sq.p.b) != 1) {
if (p.det.re == 1) {
stop(paste("error: sigma.sq.p.ig[[2]] must be a vector of length ",
p.det.re, " with elements corresponding to sigma.sq.ps' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.p.ig[[2]] must be a vector of length ",
p.det.re, " or 1 with elements corresponding to sigma.sq.ps' scale", sep = ""))
}
}
if (length(sigma.sq.p.a) != p.det.re) {
sigma.sq.p.a <- rep(sigma.sq.p.a, p.det.re)
}
if (length(sigma.sq.p.b) != p.det.re) {
sigma.sq.p.b <- rep(sigma.sq.p.b, p.det.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.p.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.p.a <- rep(0.1, p.det.re)
sigma.sq.p.b <- rep(0.1, p.det.re)
}
} else {
sigma.sq.p.a <- 0
sigma.sq.p.b <- 0
}
# Starting values -----------------------------------------------------
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
# z -------------------------------
if ("z" %in% names(inits)) {
z.inits <- inits$z
if (!is.vector(z.inits)) {
stop(paste("error: initial values for z must be a vector of length ",
J, sep = ""))
}
if (length(z.inits) != J) {
stop(paste("error: initial values for z must be a vector of length ",
J, sep = ""))
}
z.test <- tapply(y, z.long.indx.r, max, na.rm = TRUE)
init.test <- sum(z.inits < z.test)
if (init.test > 0) {
stop("error: initial values for latent occurrence (z) are invalid. Please re-specify inits$z so initial values are 1 if the species is observed at that site.")
}
} else {
z.inits <- tapply(y, z.long.indx.r, max, na.rm = TRUE)
if (verbose) {
message("z is not specified in initial values.\nSetting initial values based on observed data\n")
}
}
# beta -----------------------
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (length(beta.inits) != p.occ & length(beta.inits) != 1) {
if (p.occ == 1) {
stop(paste("error: initial values for beta must be of length ", p.occ,
sep = ""))
} else {
stop(paste("error: initial values for beta must be of length ", p.occ, " or 1",
sep = ""))
}
}
if (length(beta.inits) != p.occ) {
beta.inits <- rep(beta.inits, p.occ)
}
} else {
beta.inits <- rnorm(p.occ, mu.beta, sqrt(sigma.beta))
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from the prior distribution\n')
}
}
# alpha -----------------------
if ("alpha" %in% names(inits)) {
alpha.inits <- inits[["alpha"]]
if (length(alpha.inits) != n.data | !is.list(alpha.inits)) {
stop(paste("error: initial values for alpha must be a list of length ", n.data,
sep = ""))
}
for (q in 1:n.data) {
if (length(alpha.inits[[q]]) != p.det.long[q] & length(alpha.inits[[q]]) != 1) {
if (p.det.long[q] == 1) {
stop(paste("error: initial values for alpha[[", q, "]] must be a vector of length ",
p.det.long[q], sep = ""))
} else {
stop(paste("error: initial values for alpha[[", q, "]] must be a vector of length ",
p.det.long[q], " or 1", sep = ""))
}
}
if (length(alpha.inits[[q]]) != p.det.long[q]) {
alpha.inits[[q]] <- rep(alpha.inits, p.det.long[q])
}
}
alpha.inits <- unlist(alpha.inits)
} else {
if (verbose) {
message("alpha is not specified in initial values.\nSetting initial values to random values from the prior distribution\n")
}
alpha.inits <- rnorm(p.det, mu.alpha, sqrt(sigma.alpha))
}
alpha.indx.r <- unlist(sapply(1:n.data, function(a) rep(a, p.det.long[a])))
alpha.indx.c <- alpha.indx.r - 1
# sigma.sq.psi -------------------
if (p.occ.re > 0) {
if ("sigma.sq.psi" %in% names(inits)) {
sigma.sq.psi.inits <- inits[["sigma.sq.psi"]]
if (length(sigma.sq.psi.inits) != p.occ.re & length(sigma.sq.psi.inits) != 1) {
if (p.occ.re == 1) {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.occ.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.occ.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.psi.inits) != p.occ.re) {
sigma.sq.psi.inits <- rep(sigma.sq.psi.inits, p.occ.re)
}
} else {
sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
if (verbose) {
message("sigma.sq.psi is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
}
}
beta.star.indx <- rep(0:(p.occ.re - 1), n.occ.re.long)
beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
} else {
sigma.sq.psi.inits <- 0
beta.star.indx <- 0
beta.star.inits <- 0
}
# sigma.sq.p ------------------
if (p.det.re > 0) {
if ("sigma.sq.p" %in% names(inits)) {
sigma.sq.p.inits <- inits[["sigma.sq.p"]]
if (length(sigma.sq.p.inits) != p.det.re & length(sigma.sq.p.inits) != 1) {
if (p.det.re == 1) {
stop(paste("error: initial values for sigma.sq.p must be of length ", p.det.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.p must be of length ", p.det.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.p.inits) != p.det.re) {
sigma.sq.p.inits <- rep(sigma.sq.p.inits, p.det.re)
}
} else {
sigma.sq.p.inits <- runif(p.det.re, 0.5, 10)
if (verbose) {
message("sigma.sq.p is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
}
}
# Keep track of which detection random effect you're on.
alpha.star.indx <- rep(0:(p.det.re - 1), n.det.re.long)
# Index that indicates the column in X.p.re.all
alpha.col.list <- list()
indx <- 1
for (i in 1:n.data) {
if (p.det.re.by.data[i] > 0) {
for (j in 1:p.det.re.by.data[i]) {
if (j > 1) {
alpha.col.list[[i]] <- c(alpha.col.list[[i]], rep(j - 1, n.det.re.long[indx]))
} else {
alpha.col.list[[i]] <- rep(j - 1, n.det.re.long[indx])
}
indx <- indx + 1
}
}
}
alpha.col.indx <- unlist(alpha.col.list)
# Index that indicates the data source the random effect corresponds to.
alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
} else {
sigma.sq.p.inits <- 0
alpha.star.indx <- 0
alpha.star.inits <- 0
alpha.col.indx <- 0
}
# Should initial values be fixed --
if ("fix" %in% names(inits)) {
fix.inits <- inits[["fix"]]
if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
stop(paste("error: inits$fix must take value TRUE or FALSE"))
}
} else {
fix.inits <- FALSE
}
if (verbose & fix.inits & (n.chains > 1)) {
message("Fixing initial values across all chains\n")
}
curr.chain <- 1
# Specify storage modes -----------------------------------------------
storage.mode(y) <- "double"
storage.mode(z.inits) <- "double"
storage.mode(X.p.all) <- "double"
storage.mode(X) <- "double"
storage.mode(p.det.long) <- "integer"
storage.mode(n.obs.long) <- "integer"
storage.mode(J.long) <- "integer"
consts <- c(J, n.obs, p.occ, p.occ.re, n.occ.re, p.det, p.det.re, n.det.re, n.data)
storage.mode(consts) <- "integer"
storage.mode(K) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(alpha.inits) <- "double"
storage.mode(z.long.indx.c) <- "integer"
storage.mode(data.indx.c) <- "integer"
storage.mode(alpha.indx.c) <- "integer"
storage.mode(waic.J.indx) <- "integer"
storage.mode(waic.n.obs.indx) <- "integer"
# Calculate waic. Might make this an argument in the future.
waic.calc <- TRUE
storage.mode(waic.calc) <- "integer"
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(mu.alpha) <- "double"
storage.mode(sigma.alpha) <- "double"
storage.mode(n.samples) <- "integer"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
chain.info <- c(curr.chain, n.chains)
storage.mode(chain.info) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
samples.info <- c(n.burn, n.thin, n.post.samples)
storage.mode(samples.info) <- "integer"
# For detection random effects
storage.mode(X.p.re.all) <- "integer"
storage.mode(p.det.re.by.data) <- "integer"
alpha.level.indx <- sort(unique(c(X.p.re.all)))
storage.mode(alpha.level.indx) <- "integer"
storage.mode(n.det.re.long) <- "integer"
storage.mode(sigma.sq.p.inits) <- "double"
storage.mode(sigma.sq.p.a) <- "double"
storage.mode(sigma.sq.p.b) <- "double"
storage.mode(alpha.star.inits) <- "double"
storage.mode(alpha.star.indx) <- "integer"
storage.mode(alpha.n.re.indx) <- "integer"
storage.mode(alpha.col.indx) <- "integer"
# For occurrence random effects
storage.mode(X.re) <- "integer"
beta.level.indx <- sort(unique(c(X.re)))
storage.mode(beta.level.indx) <- "integer"
storage.mode(sigma.sq.psi.inits) <- "double"
storage.mode(sigma.sq.psi.a) <- "double"
storage.mode(sigma.sq.psi.b) <- "double"
storage.mode(n.occ.re.long) <- "integer"
storage.mode(beta.star.inits) <- "double"
storage.mode(beta.star.indx) <- "integer"
# Fit the model -------------------------------------------------------
out.tmp <- list()
out <- list()
if (!k.fold.only) {
for (i in 1:n.chains) {
# Change initial values if i > 1
if ((i > 1) & (!fix.inits)) {
beta.inits <- rnorm(p.occ, mu.beta, sqrt(sigma.beta))
alpha.inits <- rnorm(p.det, mu.alpha, sqrt(sigma.alpha))
if (p.occ.re > 0) {
sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
}
if (p.det.re > 0) {
sigma.sq.p.inits <- runif(p.det.re, 0.5, 10)
alpha.star.inits <- rnorm(n.det.re, 0, sqrt(sigma.sq.p.inits[alpha.star.indx + 1]))
}
}
storage.mode(chain.info) <- "integer"
# Run the model in C
out.tmp[[i]] <- .Call("intPGOcc", y, X, X.p.all, X.re, X.p.re.all, consts, p.det.long,
J.long, n.obs.long, K, n.occ.re.long, n.det.re.long,
beta.inits, alpha.inits,
sigma.sq.psi.inits, sigma.sq.p.inits, beta.star.inits,
alpha.star.inits, z.inits,
z.long.indx.c, data.indx.c, alpha.indx.c, beta.star.indx,
beta.level.indx, alpha.star.indx, alpha.level.indx, alpha.n.re.indx,
alpha.col.indx, waic.J.indx, waic.n.obs.indx, waic.calc,
mu.beta, mu.alpha, Sigma.beta, sigma.alpha,
sigma.sq.psi.a, sigma.sq.psi.b, sigma.sq.p.a, sigma.sq.p.b, n.samples,
n.omp.threads, verbose, n.report, samples.info, chain.info)
chain.info[1] <- chain.info[1] + 1
} # i
# Calculate R-Hat ---------------
out <- list()
out$rhat <- list()
if (n.chains > 1) {
out$rhat$beta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2]
out$rhat$alpha <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$alpha.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2]
if (p.occ.re > 0) {
out$rhat$sigma.sq.psi <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.psi.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
if (p.det.re > 0) {
out$rhat$sigma.sq.p <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.p.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
} else {
out$rhat$beta <- rep(NA, p.occ)
out$rhat$alpha <- rep(NA, p.det)
if (p.det.re > 0) {
out$rhat$sigma.sq.p <- rep(NA, p.det.re)
}
if (p.occ.re > 0) {
out$rhat$sigma.sq.psi <- rep(NA, p.occ.re)
}
}
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- x.names
out$alpha.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$alpha.samples))))
colnames(out$alpha.samples) <- x.p.names
out$z.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$z.samples))))
out$psi.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$psi.samples))))
# p.samples is returned as a list, where each element
out$p.samples <- do.call(rbind, lapply(out.tmp, function(a) a$p.samples))
# corresponds to a different data set.
tmp <- list()
indx <- 1
for (q in 1:n.data) {
tmp[[q]] <- array(NA, dim = c(J.long[q] * K.long.max[q], n.post.samples * n.chains))
tmp[[q]][names.long[[q]], ] <- out$p.samples[indx:(indx + n.obs.long[q] - 1), ]
tmp[[q]] <- array(tmp[[q]], dim = c(J.long[q], K.long.max[q], n.post.samples * n.chains))
tmp[[q]] <- aperm(tmp[[q]], c(3, 1, 2))
indx <- indx + n.obs.long[q]
}
out$p.samples <- tmp
# Likelihood samples for WAIC calculation.
out$like.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$like.samples))))
if (p.occ.re > 0) {
out$sigma.sq.psi.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.psi.samples))))
colnames(out$sigma.sq.psi.samples) <- x.re.names
out$beta.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
tmp.names <- unlist(re.level.names)
beta.star.names <- paste(rep(x.re.names, n.occ.re.long), tmp.names, sep = '-')
colnames(out$beta.star.samples) <- beta.star.names
out$re.level.names <- re.level.names
}
if (p.det.re > 0) {
out$sigma.sq.p.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.p.samples))))
colnames(out$sigma.sq.p.samples) <- x.p.re.names
out$alpha.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$alpha.star.samples))))
tmp.names <- unlist(p.re.level.names)
alpha.star.names <- paste(rep(x.p.re.names, n.det.re.long), tmp.names, sep = '-')
colnames(out$alpha.star.samples) <- alpha.star.names
out$p.re.level.names <- p.re.level.names
}
# Calculate effective sample sizes
out$ESS <- list()
out$ESS$beta <- effectiveSize(out$beta.samples)
out$ESS$alpha <- effectiveSize(out$alpha.samples)
if (p.occ.re > 0) {
out$ESS$sigma.sq.psi <- effectiveSize(out$sigma.sq.psi.samples)
}
if (p.det.re > 0) {
out$ESS$sigma.sq.p <- effectiveSize(out$sigma.sq.p.samples)
}
out$X <- X
out$X.p <- X.p.orig
out$X.re <- X.re
out$X.p.re <- X.p.re
out$y <- y.big
out$n.samples <- n.samples
out$call <- cl
out$sites <- sites
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
if (p.occ.re > 0) {
out$psiRE <- TRUE
} else {
out$psiRE <- FALSE
}
out$pRELong <- ifelse(p.det.re.by.data > 0, TRUE, FALSE)
}
# K-fold cross-validation -------
if (!missing(k.fold)) {
if (verbose) {
cat("----------------------------------------\n");
cat("\tCross-validation\n");
cat("----------------------------------------\n");
message(paste("Performing ", k.fold, "-fold cross-validation using ", k.fold.threads,
" thread(s).", sep = ''))
}
set.seed(k.fold.seed)
if (missing(k.fold.data)) {
k.fold.data <- NULL
}
# Check to see if only one data source should be used for hold-out evaluations
if (!is.null(k.fold.data)) {
if (!is.numeric(k.fold.data) | length(k.fold.data) != 1) {
stop("error: if specified, k.fold.data must be a single numeric value")
}
if (verbose) {
message(paste("Only holding out data from data source ", k.fold.data, ".", sep = ''))
}
sites.random <- sample(sites[[k.fold.data]])
} else {
sites.random <- sample(1:J)
}
sites.k.fold <- split(sites.random, rep(1:k.fold, length.out = length(sites.random)))
registerDoParallel(k.fold.threads)
model.deviance <- foreach (i = 1:k.fold, .combine = '+') %dopar% {
curr.set <- sort(sites.k.fold[[i]])
curr.set.pred <- curr.set
curr.set.fit <- (1:J)[-curr.set]
if (!is.null(k.fold.data)) {
# Only drop out data for the k.fold.data data source if multiple data sources
# exist at a given site.
curr.set.fit <- sort(unique(c(curr.set.fit, unlist(sites[-k.fold.data]))))
}
y.indx <- !((z.long.indx.r) %in% curr.set)
if (!is.null(k.fold.data)) {
y.indx <- ifelse(data.indx.r == k.fold.data, y.indx, TRUE)
}
y.fit <- y[y.indx]
y.0 <- y[!y.indx]
z.inits.fit <- z.inits[curr.set.fit]
X.p.fit <- X.p.all[y.indx, , drop = FALSE]
X.p.0 <- X.p.all[!y.indx, , drop = FALSE]
X.fit <- X[curr.set.fit, , drop = FALSE]
X.0 <- X[curr.set.pred, , drop = FALSE]
J.fit <- nrow(X.fit)
data.indx.c.fit <- data.indx.c[y.indx]
data.indx.0 <- data.indx.c[!y.indx] + 1
data.indx.r.fit <- data.indx.c.fit + 1
# Random Detection Effects
X.p.re.all.fit <- X.p.re.all[y.indx, , drop = FALSE]
X.p.re.all.0 <- X.p.re.all[!y.indx, , drop = FALSE]
n.det.re.fit <- length(unique(c(X.p.re.all.fit)[!is.na(c(X.p.re.all.fit))]))
# Number of random effect levels for each data set
n.det.re.by.data.fit <- rep(NA, n.data)
for (q in 1:n.data) {
tmp <- c(X.p.re.all.fit[which(data.indx.r.fit == q, ), , drop = FALSE])
n.det.re.by.data.fit[q] <- length(unique(tmp[!is.na(tmp)]))
}
# Number of unique levels in each fitted random effect.
n.det.re.long.fit <- rep(NA, p.det.re)
curr.indx <- 1
for (q in 1:n.data) {
tmp <- X.p.re.all.fit[which(data.indx.r.fit == q), , drop = FALSE]
n.det.re.fit.curr <- apply(tmp, 2, function(a) length(unique(a[!is.na(a)])))
curr.res <- n.det.re.fit.curr[n.det.re.fit.curr > 0]
if (length(curr.res > 0)) {
n.det.re.long.fit[curr.indx:(curr.indx + length(curr.res) - 1)] <- curr.res
curr.indx <- curr.indx + length(curr.res)
}
}
if (p.det.re > 0) {
# Keep track of which detection random effect you're on.
alpha.star.indx.fit <- rep(0:(p.det.re - 1), n.det.re.long.fit)
# Index that indicates the column in X.p.re.all
alpha.col.fit.list <- list()
indx <- 1
for (q in 1:n.data) {
if (p.det.re.by.data[q] > 0) {
for (j in 1:p.det.re.by.data[q]) {
if (j > 1) {
alpha.col.fit.list[[q]] <- c(alpha.col.fit.list[[q]], rep(j - 1, n.det.re.long.fit[indx]))
} else {
alpha.col.fit.list[[q]] <- rep(j - 1, n.det.re.long.fit[indx])
}
indx <- indx + 1
}
}
}
alpha.col.indx.fit <- unlist(alpha.col.fit.list)
# Index that indicates the data source the random effect corresponds to.
alpha.star.inits.fit <- rnorm(n.det.re.fit, 0, sqrt(sigma.sq.p.inits[alpha.star.indx.fit + 1]))
alpha.n.re.indx.fit <- apply(X.p.re.all.fit, 1, function(a) sum(!is.na(a)))
} else {
alpha.star.indx.fit <- alpha.star.indx
alpha.level.indx.fit <- alpha.level.indx
alpha.star.inits.fit <- alpha.star.inits
alpha.n.re.indx.fit <- alpha.n.re.indx
alpha.col.indx.fit <- alpha.col.indx
}
# Random occurrence effects
X.re.fit <- X.re[curr.set.fit, , drop = FALSE]
X.re.0 <- X.re[curr.set.pred, , drop = FALSE]
n.occ.re.fit <- length(unique(c(X.re.fit)))
n.occ.re.long.fit <- apply(X.re.fit, 2, function(a) length(unique(a)))
if (p.occ.re > 0) {
beta.star.indx.fit <- rep(0:(p.occ.re - 1), n.occ.re.long.fit)
beta.level.indx.fit <- sort(unique(c(X.re.fit)))
beta.star.inits.fit <- rnorm(n.occ.re.fit, 0,
sqrt(sigma.sq.psi.inits[beta.star.indx.fit + 1]))
re.level.names.fit <- list()
for (t in 1:p.occ.re) {
tmp.indx <- beta.level.indx.fit[beta.star.indx.fit == t - 1]
re.level.names.fit[[t]] <- unlist(re.level.names)[tmp.indx + 1]
}
} else {
beta.star.indx.fit <- beta.star.indx
beta.level.indx.fit <- beta.level.indx
beta.star.inits.fit <- beta.star.inits
re.level.names.fit <- re.level.names
}
# Site indices for fitted data
sites.fit <- sapply(sites,
function(a) which(as.numeric(row.names(X.fit)) %in% a[a %in% curr.set.fit]))
tmp <- sapply(sites, function(a) a %in% curr.set.fit)
# This is needed to ensure that you don't pull the data from data source k.fold.data at sites where there
# is another data source.
if (!is.null(k.fold.data)) {
sites.fit[[k.fold.data]] <- which(as.numeric(row.names(X.fit)) %in% sites[[k.fold.data]][sites[[k.fold.data]] %in% (1:J)[-curr.set]])
tmp[[k.fold.data]] <- sites[[k.fold.data]] %in% (1:J)[-curr.set]
}
K.fit <- K[unlist(tmp)]
y.big.fit <- y.big
for (q in 1:n.data) {
for (j in 1:J.long[q]) {
if (is.null(k.fold.data)) {
if (sites[[q]][j] %in% curr.set) {
y.big.fit[[q]][j, ] <- NA
}
} else {
if (q == k.fold.data) {
if (sites[[q]][j] %in% curr.set) {
y.big.fit[[q]][j, ] <- NA
}
}
}
}
y.big.fit[[q]] <- y.big.fit[[q]][which(apply(y.big.fit[[q]],
1, function(a) sum(!is.na(a)) > 0)), ]
}
y.big.0 <- y.big
for (q in 1:n.data) {
for (j in 1:J.long[q]) {
if (is.null(k.fold.data)) {
if (! sites[[q]][j] %in% curr.set) {
y.big.0[[q]][j, ] <- NA
}
} else {
if (q == k.fold.data) {
if (! sites[[q]][j] %in% curr.set) {
y.big.0[[q]][j, ] <- NA
}
}
}
}
y.big.0[[q]] <- y.big.0[[q]][which(apply(y.big.0[[q]],
1, function(a) sum(!is.na(a)) > 0)), ]
}
z.long.indx.fit <- list()
for (q in 1:n.data) {
z.long.indx.fit[[q]] <- rep(sites.fit[[q]], K.long.max[q])
z.long.indx.fit[[q]] <- z.long.indx.fit[[q]][!is.na(c(y.big.fit[[q]]))]
}
z.long.indx.fit <- unlist(z.long.indx.fit)
z.long.indx.fit <- z.long.indx.fit - 1
# Site indices for hold out data
sites.0 <- sapply(sites,
function(a) which(as.numeric(row.names(X.0)) %in% a[a %in% curr.set.pred]))
tmp <- sapply(sites, function(a) a %in% curr.set.pred)
if (!is.null(k.fold.data)) {
sites.0[-k.fold.data] <- NA
for (q in 1:n.data) {
if (q != k.fold.data) {
tmp[[q]] <- rep(FALSE, J.long[q])
}
}
}
K.0 <- K[unlist(tmp)]
if (is.null(k.fold.data)) {
z.long.indx.0 <- list()
for (q in 1:n.data) {
z.long.indx.0[[q]] <- rep(sites.0[[q]], K.long.max[q])
z.long.indx.0[[q]] <- z.long.indx.0[[q]][!is.na(c(y.big.0[[q]]))]
}
z.long.indx.0 <- unlist(z.long.indx.0) - 1
} else {
z.long.indx.0 <- rep(sites.0[[k.fold.data]], K.long.max[k.fold.data])
z.long.indx.0 <- z.long.indx.0[!is.na(c(y.big.0[[k.fold.data]]))] - 1
}
verbose.fit <- FALSE
n.omp.threads.fit <- 1
n.obs.fit <- length(y.fit)
n.obs.0 <- length(y.0)
n.obs.long.fit <- as.vector(table(data.indx.c.fit))
n.obs.long.0 <- n.obs.long - n.obs.long.fit
J.long.fit <- as.vector(tapply(z.long.indx.fit, factor(data.indx.c.fit),
FUN = function(a) length(unique(a))))
storage.mode(y.fit) <- "double"
storage.mode(z.inits.fit) <- "double"
storage.mode(X.p.fit) <- "double"
storage.mode(X.fit) <- "double"
storage.mode(J.long.fit) <- "integer"
storage.mode(K.fit) <- "integer"
storage.mode(n.obs.long.fit) <- "integer"
consts.fit <- c(J.fit, n.obs.fit, p.occ, p.occ.re, n.occ.re.fit,
p.det, p.det.re, n.det.re.fit, n.data)
storage.mode(consts.fit) <- "integer"
storage.mode(z.long.indx.fit) <- "integer"
storage.mode(data.indx.c.fit) <- "integer"
storage.mode(n.samples) <- "integer"
storage.mode(n.omp.threads.fit) <- "integer"
storage.mode(verbose.fit) <- "integer"
storage.mode(n.report) <- "integer"
# Occurrence random effects
storage.mode(X.re.fit) <- "integer"
storage.mode(n.occ.re.long.fit) <- "integer"
storage.mode(beta.star.inits.fit) <- "double"
storage.mode(beta.star.indx.fit) <- "integer"
storage.mode(beta.level.indx.fit) <- "integer"
# For detection random effects
storage.mode(X.p.re.all.fit) <- "integer"
storage.mode(p.det.re.by.data) <- "integer"
alpha.level.indx.fit <- sort(unique(c(X.p.re.all.fit)))
storage.mode(alpha.level.indx.fit) <- "integer"
storage.mode(n.det.re.long.fit) <- "integer"
storage.mode(sigma.sq.p.inits) <- "double"
storage.mode(sigma.sq.p.a) <- "double"
storage.mode(sigma.sq.p.b) <- "double"
storage.mode(alpha.star.inits.fit) <- "double"
storage.mode(alpha.star.indx.fit) <- "integer"
storage.mode(alpha.n.re.indx.fit) <- "integer"
storage.mode(alpha.col.indx.fit) <- "integer"
chain.info[1] <- 1
storage.mode(chain.info) <- "integer"
waic.calc.fit <- FALSE
storage.mode(waic.calc.fit) <- "integer"
out.fit <- .Call("intPGOcc", y.fit, X.fit, X.p.fit, X.re.fit, X.p.re.all.fit,
consts.fit, p.det.long, J.long.fit, n.obs.long.fit, K.fit,
n.occ.re.long.fit, n.det.re.long.fit,
beta.inits, alpha.inits, sigma.sq.psi.inits,
sigma.sq.p.inits, beta.star.inits.fit, alpha.star.inits.fit,
z.inits.fit, z.long.indx.fit, data.indx.c.fit, alpha.indx.c,
beta.star.indx.fit, beta.level.indx.fit,
alpha.star.indx.fit, alpha.level.indx.fit,
alpha.n.re.indx.fit, alpha.col.indx.fit,
waic.J.indx, waic.n.obs.indx, waic.calc.fit, mu.beta, mu.alpha,
Sigma.beta, sigma.alpha, sigma.sq.psi.a, sigma.sq.psi.b,
sigma.sq.p.a, sigma.sq.p.b, n.samples,
n.omp.threads.fit, verbose.fit, n.report, samples.info, chain.info)
out.fit$beta.samples <- mcmc(t(out.fit$beta.samples))
colnames(out.fit$beta.samples) <- x.names
out.fit$X <- X.fit
out.fit$y <- y.fit
out.fit$X.p <- X.p.fit
out.fit$call <- cl
out.fit$n.samples <- n.samples
out.fit$n.post <- n.post.samples
out.fit$n.thin <- n.thin
out.fit$n.burn <- n.burn
out.fit$n.chains <- 1
if (p.det.re > 0) {
out.fit$pRE <- TRUE
} else {
out.fit$pRE <- FALSE
}
if (p.occ.re > 0) {
out.fit$sigma.sq.psi.samples <- mcmc(t(out.fit$sigma.sq.psi.samples))
colnames(out.fit$sigma.sq.psi.samples) <- x.re.names
out.fit$beta.star.samples <- mcmc(t(out.fit$beta.star.samples))
tmp.names <- unlist(re.level.names.fit)
beta.star.names <- paste(rep(x.re.names, n.occ.re.long.fit), tmp.names, sep = '-')
colnames(out.fit$beta.star.samples) <- beta.star.names
out.fit$re.level.names <- re.level.names.fit
out.fit$X.re <- X.re.fit
}
if (p.occ.re > 0) {
out.fit$psiRE <- TRUE
} else {
out.fit$psiRE <- FALSE
}
class(out.fit) <- "intPGOcc"
# Get RE levels correct for when they aren't supplied at values starting at 1.
if (p.occ.re > 0) {
tmp <- unlist(re.level.names)
X.re.0 <- matrix(tmp[c(X.re.0 + 1)], nrow(X.re.0), ncol(X.re.0))
colnames(X.re.0) <- x.re.names
}
# Predict occurrence at new sites.
if (p.occ.re > 0) {X.0 <- cbind(X.0, X.re.0)}
out.pred <- predict.intPGOcc(out.fit, X.0)
# Detection
# Get full random effects if certain levels aren't in the fitted values
if (p.det.re > 0) {
if (n.det.re.fit != n.det.re) {
tmp <- matrix(NA, n.det.re, n.post.samples)
tmp[alpha.level.indx.fit + 1, ] <- out.fit$alpha.star.samples
out.fit$alpha.star.samples <- tmp
}
# Samples missing NA values
tmp.indx <- which(apply(out.fit$alpha.star.samples, 1, function(a) sum(is.na(a))) == n.post.samples)
for (l in tmp.indx) {
out.fit$alpha.star.samples[l, ] <- rnorm(n.post.samples, 0,
sqrt(out.fit$sigma.sq.p.samples[alpha.star.indx[l] + 1, ]))
}
}
p.0.samples <- matrix(NA, n.post.samples, nrow(X.p.0))
like.samples <- rep(NA, nrow(X.p.0))
for (j in 1:nrow(X.p.0)) {
if (p.det.re > 0) {
det.re.sum <- apply(out.fit$alpha.star.samples[which(alpha.level.indx %in% X.p.re.all.0[j, ]), , drop = FALSE], 2, sum)
p.0.samples[, j] <- logit.inv(X.p.0[j, 1:sum(alpha.indx.r == data.indx.0[j])] %*% out.fit$alpha.samples[which(alpha.indx.r == data.indx.0[j]), ] + det.re.sum)
} else {
p.0.samples[, j] <- logit.inv(X.p.0[j, 1:sum(alpha.indx.r == data.indx.0[j])] %*% out.fit$alpha.samples[which(alpha.indx.r == data.indx.0[j]), ])
}
like.samples[j] <- mean(dbinom(y.0[j], 1,
p.0.samples[, j] * out.pred$z.0.samples[, z.long.indx.0[j] + 1]))
}
as.vector(tapply(like.samples, data.indx.0, function(a) sum(log(a))))
}
model.deviance <- -2 * model.deviance
# Return objects from cross-validation
out$k.fold.deviance <- model.deviance
stopImplicitCluster()
}
class(out) <- "intPGOcc"
out$run.time <- proc.time() - ptm
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.